Merge equivalent stacks in a separate stage of parsing

* No more automatic merging every time a state is pushed to the stack
* When popping from the stack, the current version is always preserved
This commit is contained in:
Max Brunsfeld 2016-04-10 14:12:24 -07:00
parent 827573f1c7
commit 695be5bc79
7 changed files with 582 additions and 755 deletions

View file

@ -93,7 +93,6 @@ describe("Stack", [&]() {
TSTree *trees[tree_count];
TreeSelectionSpy tree_selection_spy;
TSLength tree_len = {2, 3, 0, 3};
TSSymbolMetadata metadata = {true, true, true, true};
before_each([&]() {
record_alloc::start();
@ -120,9 +119,9 @@ describe("Stack", [&]() {
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
});
describe("pushing entries to the stack", [&]() {
it("adds entries to the stack", [&]() {
AssertThat(ts_stack_version_count(stack), Equals(1));
describe("push(version, tree, is_pending, state)", [&]() {
it("adds entries to the given version of the stack", [&]() {
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
AssertThat(ts_stack_top_position(stack, 0), Equals(ts_length_zero()));
@ -150,473 +149,382 @@ describe("Stack", [&]() {
});
});
describe("popping nodes from the stack", [&]() {
describe("merge()", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
// . <──0── A <──1── B*
// ↑
// └───2─── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_pop_count(stack, 0, 0);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
ts_stack_push(stack, 1, trees[2], false, stateC);
});
it("removes the given number of nodes from the stack", [&]() {
// . <──0── A*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
it("combines versions that have the same top states and positions", [&]() {
// . <──0── A <──1── B <──3── D*
// ↑
// └───2─── C <──4── D*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateA));
free_slice_array(&pop_result.slices);
// .*
pop_result = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
free_slice_array(&pop_result.slices);
// . <──0── A <──1── B <──3── D*
// ↑ |
// └───2─── C <──4───┘
ts_stack_merge(stack);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateB, 1},
{stateC, 1},
{stateA, 2},
{0, 3},
})));
});
it("does not count 'extra' trees toward the count", [&]() {
trees[1]->extra = true;
// .*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
free_slice_array(&pop_result.slices);
it("does not combine versions that have different states", [&]() {
ts_stack_merge(stack);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
it("pops the entire stack when given a negative count", [&]() {
// .*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, -1);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
it("does not combine versions that have different positions", [&]() {
// . <──0── A <──1── B <────3──── D*
// ↑
// └───2─── C <──4── D*
trees[3]->size = tree_len * 3;
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
free_slice_array(&pop_result.slices);
ts_stack_merge(stack);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
describe("when an error state exists above the given depth", [&]() {
it("stops popping nodes at the error", [&]() {
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
ts_stack_push(stack, 0, trees[3], false, ts_parse_state_error);
ts_stack_push(stack, 0, trees[4], false, stateD);
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopStoppedAtError));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(ts_parse_state_error));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.version, Equals(0));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[4] })));
free_slice_array(&pop_result.slices);
});
});
describe("popping pending nodes from the stack", [&]() {
it("removes the top node from the stack if it was pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[3], true, stateD);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
free_slice_array(&pop.slices);
});
it("does nothing if the top node was not pushed in pending mode", [&]() {
describe("when the merged versions have more than one common entry", [&]() {
it("combines all of the top common entries", [&]() {
// . <──0── A <──1── B <──3── D <──5── E*
// ↑
// └───2─── C <──4── D <──5── E*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 0, trees[5], false, stateE);
ts_stack_push(stack, 1, trees[4], false, stateD);
ts_stack_push(stack, 1, trees[5], false, stateE);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(0));
// . <──0── A <──1── B <──3── D <──5── E*
// ↑ |
// └───2─── C <──4───┘
ts_stack_merge(stack);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateC, 1},
{stateE, 0},
{stateD, 1},
{stateB, 2},
{stateC, 2},
{stateA, 3},
{0, 4},
})));
});
});
});
describe("pop_count(version, count)", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
});
it("creates a new version with the given number of entries removed", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pop.slices);
});
it("does not count 'extra' trees toward the given count", [&]() {
trees[1]->extra = true;
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(0));
free_slice_array(&pop.slices);
});
it("stops popping entries early if it reaches an error tree", [&]() {
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
ts_stack_push(stack, 0, trees[3], false, ts_parse_state_error);
ts_stack_push(stack, 0, trees[4], false, stateD);
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.status, Equals(StackPopResult::StackPopStoppedAtError));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 1), Equals(ts_parse_state_error));
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[4] })));
free_slice_array(&pop.slices);
});
describe("when the version has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// └───4─── E <──5── F <──6───┘
ts_stack_push(stack, 0, trees[3], false, stateD);
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
free_slice_array(&pop.slices);
});
});
});
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
ts_stack_push(stack, 1, trees[6], false, stateD);
ts_stack_merge(stack);
ts_stack_push(stack, 0, trees[10], false, stateI);
describe("splitting the stack", [&]() {
it("creates a new independent version with the same entries", [&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
int new_index = ts_stack_split(stack, 0);
AssertThat(ts_stack_version_count(stack), Equals(2));
AssertThat(new_index, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └─*
ts_stack_push(stack, 0, trees[3], false, stateD);
StackPopResult pop_result = ts_stack_pop_count(stack, 1, 1);
AssertThat(ts_stack_version_count(stack), Equals(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateD));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 4));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 1), Equals(tree_len * 2));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees.size, Equals<size_t>(1));
free_slice_array(&pop_result.slices);
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └───4─── E <──5── F*
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
AssertThat(ts_stack_version_count(stack), Equals(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateD));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 4));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(ts_stack_top_position(stack, 1), Equals(tree_len * 4));
});
});
describe("pushing the same state onto two different versions of the stack", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └───4─── E <──5── F*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, trees[2], false, stateC);
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
AssertThat(ts_stack_version_count(stack), Equals(2));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateC, 1},
{stateB, 2},
{stateA, 3},
{0, 4},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateF, 0},
{stateE, 1},
{stateB, 2},
{stateA, 3},
{0, 4},
})));
});
it("merges the versions", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──6── G*
// ↑ |
// └───4─── E <──5── F <──7───┘
AssertThat(ts_stack_push(stack, 0, trees[6], false, stateG), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[7], false, stateG), Equals(StackPushMerged));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateG, 0},
{stateD, 1},
{stateF, 1},
{stateC, 2},
{stateE, 2},
{stateB, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when the merged nodes share a successor", [&]() {
it("recursively merges the successor nodes", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
// ↑
// └───4─── E <──5── F <──8── G*
AssertThat(ts_stack_push(stack, 0, trees[6], false, stateG), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 0, trees[7], false, stateH), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[6], false, stateG), Equals(StackPushContinued));
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
// ↑ |
// └───4─── E <──5── F <──8───┘
AssertThat(ts_stack_push(stack, 1, trees[7], false, stateH), Equals(StackPushMerged));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateH, 0},
{stateG, 1},
{stateD, 2},
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateC, 3},
{stateB, 3},
{stateE, 3},
{stateB, 4},
{stateA, 5},
{0, 6},
{stateA, 4},
{0, 5},
})));
});
});
describe("when the first version is only one node deep", [&]() {
it("creates a node with one null successor and one non-null successor", [&]() {
ts_tree_retain(trees[2]);
ts_tree_retain(trees[3]);
TSTree *parent = ts_tree_make_node(5, 2, tree_array({ trees[2], trees[3] }), metadata);
describe("when there are two paths that reveal different versions", [&]() {
it("returns an entry for each revealed version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// └───4─── E*
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.slices.size, Equals<size_t>(2));
// . <──────5─────── C*
// ↑ |
// └───2─── B ───3───┘
ts_stack_clear(stack);
ts_stack_split(stack, 0);
AssertThat(ts_stack_push(stack, 0, parent, false, stateC), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[2], false, stateB), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[3], false, stateC), Equals(StackPushMerged));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{0, 1},
{stateB, 1},
{0, 2},
})));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[10] })));
ts_tree_release(parent);
});
});
});
AssertThat(ts_stack_version_count(stack), Equals<size_t>(3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{0, 5},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{0, 2},
})));
AssertThat(get_stack_entries(stack, 2), Equals(vector<StackEntry>({
{stateE, 0},
{stateA, 1},
{0, 2},
})));
describe("popping from a stack version that has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
// ↑ |
// └───5─── F <──6── G <──7───┘
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, trees[2], false, stateC);
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 0, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
ts_stack_push(stack, 1, trees[6], false, stateG);
ts_stack_push(stack, 1, trees[7], false, stateE);
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateE, 0},
{stateD, 1},
{stateG, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when there are two paths that lead to two different versions", [&]() {
it("returns an entry for each revealed version", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └───5─── F*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.version, Equals(0));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[4] })));
StackSlice slice2 = pop_result.slices.contents[1];
AssertThat(slice2.version, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
AssertThat(ts_stack_version_count(stack), Equals(2));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateF, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
free_slice_array(&pop_result.slices);
});
});
describe("when there is one path, leading to one version", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──4── E <──8──H*
// ↑ |
// └───5─── F <──6── G <──7───┘
AssertThat(ts_stack_push(stack, 0, trees[8], false, stateH), Equals(StackPushContinued));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateH));
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
// ↑ |
// └───5─── F <──6── G <──7───┘
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.version, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[8] })));
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
free_slice_array(&pop_result.slices);
});
});
describe("when there are two paths that converge at the same version", [&]() {
describe("when the first path is preferred by the callback", [&]() {
it("returns one entry for that version, with the first path of trees", [&]() {
tree_selection_spy.tree_to_return = trees[2];
// . <──0── A <──1── B*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.version, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[4] })));
free_slice_array(&pop_result.slices);
free_slice_array(&pop.slices);
});
});
describe("when the second path is preferred by the callback", [&]() {
it("returns one entry for that version, with the second path of trees", [&]() {
describe("when there is one path that ends at a merged version", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// | |
// └───5─── F <──6── G <──7───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateD));
free_slice_array(&pop.slices);
});
});
describe("when there are two paths that converge on one version", [&]() {
it("returns the first path of trees if they are selected by the selection callback", [&]() {
tree_selection_spy.tree_to_return = trees[1];
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[1], trees[2], trees[3], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pop.slices);
});
it("returns the second path of trees if they are selected by the selection callback", [&]() {
tree_selection_spy.tree_to_return = trees[4];
// . <──0── A <──1── B*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.version, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[7] })))
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[4], trees[5], trees[6], trees[10] })))
free_slice_array(&pop_result.slices);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pop.slices);
});
});
describe("when there are three paths that lead to three different versions", [&]() {
it("returns three entries with different arrays of trees", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// | |
// └───7─── G <──8── H <──9───┘
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
free_slice_array(&pop.slices);
ts_stack_push(stack, 1, trees[7], false, stateG);
ts_stack_push(stack, 1, trees[8], false, stateH);
ts_stack_push(stack, 1, trees[9], false, stateD);
ts_stack_push(stack, 1, trees[10], false, stateI);
ts_stack_merge(stack);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{0, 5},
})));
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.slices.size, Equals<size_t>(3));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
StackSlice slice3 = pop.slices.contents[2];
AssertThat(slice3.version, Equals<StackVersion>(3));
AssertThat(slice3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
AssertThat(ts_stack_version_count(stack), Equals<size_t>(4));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
AssertThat(ts_stack_top_state(stack, 2), Equals(stateF));
AssertThat(ts_stack_top_state(stack, 3), Equals(stateH));
free_slice_array(&pop.slices);
});
});
});
});
describe("popping from a stack version that has been 3-way merged", [&]() {
describe("pop_pending(version)", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I
// ↑ |
// ├───4─── E <──5── F <──6───┤
// | |
// └───7─── G <──8── H <──9───┘
ts_stack_clear(stack);
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_split(stack, 0);
ts_stack_split(stack, 1);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
ts_stack_push(stack, 1, trees[6], false, stateD);
ts_stack_push(stack, 1, trees[7], false, stateG);
ts_stack_push(stack, 1, trees[8], false, stateH);
ts_stack_push(stack, 1, trees[9], false, stateD);
ts_stack_push(stack, 0, trees[10], false, stateI);
AssertThat(ts_stack_version_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when there are three different paths that lead to three different versions", [&]() {
it("returns three entries with different arrays of trees", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(ts_stack_version_count(stack), Equals(3));
it("removes the top node from the stack if it was pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], true, stateB);
AssertThat(pop_result.slices.size, Equals<size_t>(3));
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(slice1.version, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{0, 1},
})));
StackSlice slice2 = pop_result.slices.contents[1];
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(slice2.version, Equals(1));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
free_slice_array(&pop.slices);
});
StackSlice slice3 = pop_result.slices.contents[2];
AssertThat(ts_stack_top_state(stack, 2), Equals(stateH));
AssertThat(slice3.version, Equals(2));
AssertThat(slice3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
it("does nothing if the top node was not pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], false, stateB);
free_slice_array(&pop_result.slices);
});
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(0));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{0, 2},
})));
free_slice_array(&pop.slices);
});
});
});