Encapsulate ParseStackNodes

This commit is contained in:
Max Brunsfeld 2015-06-03 09:44:13 -07:00
parent 6330ae997b
commit aaaa1c8a5d
6 changed files with 405 additions and 350 deletions

View file

@ -1,5 +1,10 @@
#include "runtime/helpers/tree_helpers.h"
const char *symbol_names[12] = {
"ERROR", "END", "DOCUMENT", "AMBIGUITY",
"zero", "one", "two", "three", "four", "five", "six", "seven",
};
TSTree ** tree_array(std::vector<TSTree *> trees) {
TSTree ** result = (TSTree **)calloc(trees.size(), sizeof(TSTree *));
for (size_t i = 0; i < trees.size(); i++)
@ -18,3 +23,7 @@ std::ostream &operator<<(std::ostream &stream, const EqualsTree &matcher) {
stream << std::string("equals tree: ") << std::string(ts_tree_string(matcher.expected, matcher.symbol_names));
return stream;
}
std::ostream &operator<<(std::ostream &stream, const TSTree *tree) {
return stream << std::string(ts_tree_string(tree, symbol_names));;
}

View file

@ -5,6 +5,8 @@
#include <vector>
#include <string>
extern const char *symbol_names[12];
TSTree ** tree_array(std::vector<TSTree *> trees);
struct EqualsTree {
@ -15,5 +17,6 @@ struct EqualsTree {
};
std::ostream &operator<<(std::ostream &stream, const EqualsTree &matcher);
std::ostream &operator<<(std::ostream &stream, const TSTree *tree);
#endif // HELPERS_TREE_HELPERS_H_

View file

@ -12,18 +12,17 @@ enum {
symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7
};
const char *symbol_names[] = {
"ERROR", "END", "DOCUMENT", "AMBIGUITY",
"zero", "one", "two", "three", "four", "five", "six", "seven",
};
START_TEST
describe("ParseStack", [&]() {
ParseStack *stack;
const size_t tree_count = 6;
const size_t tree_count = 8;
TSTree *trees[tree_count];
bool merged;
ParseStackPopResultList pop;
int new_index;
before_each([&]() {
stack = ts_parse_stack_new();
TSLength len = ts_length_make(2, 2);
@ -37,214 +36,198 @@ describe("ParseStack", [&]() {
ts_tree_release(trees[i]);
});
it("starts with a single null head", [&]() {
it("starts with a single head with a null tree", [&]() {
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
AssertThat(ts_parse_stack_head(stack, 0), Equals<ParseStackNode *>(NULL));
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
});
describe("shift(head_index, state, tree)", [&]() {
it("pushes a node with the given state and tree onto the given head", [&]() {
ts_parse_stack_shift(stack, 0, 100, trees[0]);
ts_parse_stack_shift(stack, 0, 101, trees[1]);
ts_parse_stack_shift(stack, 0, 102, trees[2]);
it("can push and pop (state, tree) pairs to and from the stack", [&]() {
/*
* A0.
*/
ts_parse_stack_push(stack, 0, stateA, trees[0]);
const ParseStackEntry *entry1 = ts_parse_stack_head(stack, 0);
AssertThat(*entry1, Equals<ParseStackEntry>({trees[0], stateA}));
AssertThat(ts_parse_stack_entry_next_count(entry1), Equals(1));
AssertThat(ts_parse_stack_entry_next(entry1, 0), Equals<const ParseStackEntry *>(nullptr));
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(102));
AssertThat(head->tree, Equals(trees[2]));
AssertThat(head->successor_count, Equals(1));
/*
* A0__B1.
*/
ts_parse_stack_push(stack, 0, stateB, trees[1]);
const ParseStackEntry *entry2 = ts_parse_stack_head(stack, 0);
AssertThat(*entry2, Equals<ParseStackEntry>({trees[1], stateB}));
AssertThat(ts_parse_stack_entry_next_count(entry2), Equals(1));
AssertThat(ts_parse_stack_entry_next(entry2, 0), Equals(entry1));
head = head->successors[0];
AssertThat(head->state, Equals(101));
AssertThat(head->tree, Equals(trees[1]));
AssertThat(head->successor_count, Equals(1));
/*
* A0__B1__C2.
*/
ts_parse_stack_push(stack, 0, stateC, trees[2]);
const ParseStackEntry *entry3 = ts_parse_stack_head(stack, 0);
AssertThat(*entry3, Equals<ParseStackEntry>({trees[2], stateC}));
AssertThat(ts_parse_stack_entry_next_count(entry3), Equals(1));
AssertThat(ts_parse_stack_entry_next(entry3, 0), Equals(entry2));
head = head->successors[0];
AssertThat(head->state, Equals(100));
AssertThat(head->tree, Equals(trees[0]));
AssertThat(head->successor_count, Equals(1));
/*
* A0.
*/
pop = ts_parse_stack_pop(stack, 0, 2);
AssertThat(pop.size, Equals(1));
AssertThat(pop.contents[0].tree_count, Equals(2));
AssertThat(pop.contents[0].trees[0], Equals(trees[1]));
AssertThat(pop.contents[0].trees[1], Equals(trees[2]));
AssertThat(ts_parse_stack_head(stack, 0), Equals(entry1));
head = head->successors[0];
AssertThat(head, Equals<ParseStackNode *>(NULL));
});
/*
* .
*/
pop = ts_parse_stack_pop(stack, 0, 1);
AssertThat(pop.size, Equals(1));
AssertThat(pop.contents[0].tree_count, Equals(1));
AssertThat(pop.contents[0].trees[0], Equals(trees[0]));
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
});
describe("reduce(head_index, state, symbol, child_count)", [&]() {
it("does not count 'extra' trees toward the count given to pop()", [&]() {
ts_parse_stack_push(stack, 0, stateA, trees[0]);
ts_parse_stack_push(stack, 0, stateB, trees[1]);
ts_parse_stack_push(stack, 0, stateC, trees[2]);
ts_tree_set_extra(trees[1]);
pop = ts_parse_stack_pop(stack, 0, 2);
AssertThat(pop.size, Equals(1));
AssertThat(pop.contents[0].tree_count, Equals(3));
AssertThat(pop.contents[0].trees[0], Equals(trees[0]));
AssertThat(pop.contents[0].trees[1], Equals(trees[1]));
AssertThat(pop.contents[0].trees[2], Equals(trees[2]));
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
});
it("can split a head and manipulate the two resulting heads independently", [&]() {
/*
* A0__B1__C2.
*/
ts_parse_stack_push(stack, 0, stateA, trees[0]);
ts_parse_stack_push(stack, 0, stateB, trees[1]);
ts_parse_stack_push(stack, 0, stateC, trees[2]);
new_index = ts_parse_stack_split(stack, 0);
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
AssertThat(new_index, Equals(1));
/*
* A0__B1__C2__D3.
* \.
*/
ts_parse_stack_push(stack, 0, stateD, trees[3]);
ts_parse_stack_pop(stack, 1, 1);
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[1], stateB}));
/*
* A0__B1__C2__D3.
* \__E4__F3.
*/
ts_parse_stack_push(stack, 1, stateE, trees[4]);
ts_parse_stack_push(stack, 1, stateF, trees[3]);
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[3], stateF}));
});
describe("when same state is pushed onto two heads", [&]() {
before_each([&]() {
ts_parse_stack_shift(stack, 0, 100, trees[0]);
ts_parse_stack_shift(stack, 0, 101, trees[1]);
ts_parse_stack_shift(stack, 0, 102, trees[2]);
});
/*
* A0__B1__C2.
*/
ts_parse_stack_push(stack, 0, stateA, trees[0]);
ts_parse_stack_push(stack, 0, stateB, trees[1]);
ts_parse_stack_push(stack, 0, stateC, trees[2]);
it("replaces the given number of nodes with a single parent node", [&]() {
ts_parse_stack_reduce(stack, 0, 103, symbol4, 2);
/*
* A0__B1__C2__D3.
* \__E4__F5.
*/
ts_parse_stack_split(stack, 0);
ts_parse_stack_push(stack, 0, stateD, trees[3]);
ts_parse_stack_pop(stack, 1, 1);
ts_parse_stack_push(stack, 1, stateE, trees[4]);
ts_parse_stack_push(stack, 1, stateF, trees[5]);
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(103));
AssertThat(head->tree, Fulfills(EqualsTree(
ts_tree_make_node(symbol4, 2, tree_array({ trees[1], trees[2] }), false),
symbol_names)));
AssertThat(head->successor_count, Equals(1));
head = head->successors[0];
AssertThat(head->state, Equals(100));
AssertThat(head->tree, Equals(trees[0]));
AssertThat(head->successor_count, Equals(1));
});
describe("when one of the reduced children is an 'extra' tree", [&]() {
before_each([&]() {
ts_tree_set_extra(trees[1]);
});
it("does not count that child toward the number of children to replace", [&]() {
ts_parse_stack_reduce(stack, 0, 103, symbol4, 2);
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(103));
AssertThat(head->tree, Fulfills(EqualsTree(
ts_tree_make_node(symbol4, 3, tree_array({ trees[0], trees[1], trees[2] }), false),
symbol_names)));
AssertThat(head->successor_count, Equals(1));
head = head->successors[0];
AssertThat(head, Equals<ParseStackNode *>(NULL));
});
});
});
describe("split(head_index)", [&]() {
int new_index;
bool merged;
before_each([&]() {
// A0__B1__C2
ts_parse_stack_shift(stack, 0, stateA, trees[0]);
ts_parse_stack_shift(stack, 0, stateB, trees[1]);
ts_parse_stack_shift(stack, 0, stateC, trees[2]);
new_index = ts_parse_stack_split(stack, 0);
AssertThat(new_index, Equals(1));
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
// A0__B1__C2__D3
// \______E4__F3
ts_parse_stack_shift(stack, 0, stateD, trees[3]);
ts_parse_stack_reduce(stack, 1, stateE, symbol4, 2);
merged = ts_parse_stack_shift(stack, 1, stateF, trees[3]);
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[5], stateF}));
});
it("creates a new head pointing to the same node as the given head", [&]() {
AssertThat(merged, IsFalse());
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
ParseStackNode *head1 = ts_parse_stack_head(stack, 0);
AssertThat(head1->state, Equals(stateD));
AssertThat(head1->tree, Equals(trees[3]));
AssertThat(head1->successor_count, Equals(1));
ParseStackNode *head2 = ts_parse_stack_head(stack, 1);
AssertThat(head2->state, Equals(stateF));
AssertThat(head2->tree, Equals(trees[3]));
AssertThat(head2->successor_count, Equals(1));
});
describe("when the same state and tree are shifted onto both heads", [&]() {
before_each([&]() {
// A0__B1__C2__D3__G5
// \______E4__F3__/
merged = ts_parse_stack_shift(stack, 0, stateG, trees[5]);
describe("when the trees are identical", [&]() {
it("merges the heads, and removes nodes along both heads on subsequent pop operations", [&]() {
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
*/
merged = ts_parse_stack_push(stack, 0, stateG, trees[6]);
AssertThat(merged, IsFalse());
merged = ts_parse_stack_shift(stack, 1, stateG, trees[5]);
merged = ts_parse_stack_push(stack, 1, stateG, trees[6]);
AssertThat(merged, IsTrue());
});
it("re-joins the heads", [&]() {
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
const ParseStackEntry *entry1 = ts_parse_stack_head(stack, 0);
AssertThat(*entry1, Equals<ParseStackEntry>({trees[6], stateG}));
AssertThat(ts_parse_stack_entry_next_count(entry1), Equals(2));
AssertThat(*ts_parse_stack_entry_next(entry1, 0), Equals<ParseStackEntry>({trees[3], stateD}));
AssertThat(*ts_parse_stack_entry_next(entry1, 1), Equals<ParseStackEntry>({trees[5], stateF}));
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(stateG));
AssertThat(head->tree, Equals(trees[5]));
AssertThat(head->successor_count, Equals(2));
/*
* A0__B1__C2.
* \__E4.
*/
pop = ts_parse_stack_pop(stack, 0, 2);
ParseStackNode *successor1 = head->successors[0];
AssertThat(successor1->state, Equals(stateD));
AssertThat(successor1->tree, Equals(trees[3]))
AssertThat(successor1->successor_count, Equals(1));
AssertThat(pop.size, Equals(2));
AssertThat(pop.contents[0].tree_count, Equals(2));
AssertThat(pop.contents[0].trees[0], Equals(trees[3]));
AssertThat(pop.contents[0].trees[1], Equals(trees[6]));
AssertThat(pop.contents[1].tree_count, Equals(2));
AssertThat(pop.contents[1].trees[0], Equals(trees[5]));
AssertThat(pop.contents[1].trees[1], Equals(trees[6]));
ParseStackNode *successor2 = head->successors[1];
AssertThat(successor2->state, Equals(stateF));
AssertThat(successor2->tree, Equals(trees[3]))
AssertThat(successor2->successor_count, Equals(1));
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[2], stateC}));
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[4], stateE}));
});
});
describe("when both heads are reduced into the same state with the same symbol and yield", [&]() {
before_each([&]() {
// A0__G5
merged = ts_parse_stack_reduce(stack, 0, stateG, symbol5, 3);
describe("when the trees are different", [&]() {
it("merges the heads by creating an ambiguity node", [&]() {
/*
* A0__B1__C2__D3__G(6|7)
* \__E4__F5____/
*/
merged = ts_parse_stack_push(stack, 0, stateG, trees[6]);
AssertThat(merged, IsFalse());
merged = ts_parse_stack_reduce(stack, 1, stateG, symbol5, 2);
merged = ts_parse_stack_push(stack, 1, stateG, trees[7]);
AssertThat(merged, IsTrue());
});
it("re-joins the heads, creating an ambiguity node", [&]() {
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(stateG));
AssertThat(head->tree, Fulfills(EqualsTree(
ts_tree_make_ambiguity(2, tree_array({
ts_tree_make_node(symbol5, 3, tree_array({
trees[1],
trees[2],
trees[3],
}), false),
ts_tree_make_node(symbol5, 2, tree_array({
ts_tree_make_node(symbol4, 2, tree_array({
trees[1],
trees[2],
}), false),
trees[3]
}), false)
})),
symbol_names)));
AssertThat(head->successor_count, Equals(1));
});
});
describe("when a head with multiple paths is reduced", [&]() {
before_each([&]() {
// A0__B1__C2__D3__G5
// \______E4__F3__/
ts_parse_stack_shift(stack, 0, stateG, trees[5]);
ts_parse_stack_shift(stack, 1, stateG, trees[5]);
});
it("reduces along all paths, creating an ambiguity node", [&]() {
// A0__B1__C2__H6
// \______E4__/
ts_parse_stack_reduce(stack, 0, stateH, symbol6, 2);
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
ParseStackNode *head = ts_parse_stack_head(stack, 0);
AssertThat(head->state, Equals(stateH));
AssertThat(head->tree, Fulfills(EqualsTree(
ts_tree_make_ambiguity(2, tree_array({
ts_tree_make_node(symbol6, 2, tree_array({
trees[3],
trees[5],
}), false),
ts_tree_make_node(symbol6, 2, tree_array({
trees[3],
trees[5],
}), false)
})),
symbol_names)));
AssertThat(head->successor_count, Equals(2));
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({
ts_tree_make_ambiguity(2, tree_array({ trees[6], trees[7] })),
stateG
}));
});
});
});
});
END_TEST
bool operator==(const ParseStackEntry &left, const ParseStackEntry &right) {
return left.state == right.state && ts_tree_eq(left.tree, right.tree);
}
std::ostream &operator<<(std::ostream &stream, const ParseStackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.tree << "}";
}

View file

@ -5,16 +5,25 @@
#include "runtime/length.h"
#include <assert.h>
static const size_t INITIAL_HEAD_CAPACITY = 3;
#define MAX_POP_PATH_COUNT 8
#define INITIAL_HEAD_CAPACITY 3
typedef struct ParseStackNode {
ParseStackEntry entry;
struct ParseStackNode *successors[MAX_POP_PATH_COUNT];
short unsigned int successor_count;
short unsigned int ref_count;
} ParseStackNode;
struct ParseStack {
ParseStackNode **heads;
int head_count;
int head_capacity;
ParseStackPopResult last_pop_results[MAX_POP_PATH_COUNT];
};
/*
* Section: Lifecycle
* Section: Stack lifecycle
*/
ParseStack *ts_parse_stack_new() {
@ -28,163 +37,36 @@ ParseStack *ts_parse_stack_new() {
}
void ts_parse_stack_delete(ParseStack *this) {
if (this->heads)
free(this->heads);
free(this->heads);
free(this);
}
/*
* Section: Reading
* Section: Reading from the stack
*/
ParseStackNode *ts_parse_stack_head(const ParseStack *this, int head_index) {
assert(head_index < this->head_count);
return this->heads[head_index];
const ParseStackEntry *ts_parse_stack_head(const ParseStack *this, int head) {
assert(head < this->head_count);
ParseStackNode *node = this->heads[head];
return node ? &node->entry : NULL;
}
int ts_parse_stack_head_count(const ParseStack *this) {
return this->head_count;
}
/*
* Section: Updating
*/
static ParseStackNode *stack_node_new(ParseStackNode *, TSStateId, TSTree *);
static void stack_node_retain(ParseStackNode *);
static bool stack_node_release(ParseStackNode *);
static void stack_node_add_successor(ParseStackNode *, ParseStackNode *);
static void parse_stack_remove_head(ParseStack *, int);
static bool parse_stack_merge_head(ParseStack *, int, TSStateId, TSTree *);
bool ts_parse_stack_shift(ParseStack *this, int head_index, TSStateId state, TSTree *tree) {
assert(head_index < this->head_count);
if (parse_stack_merge_head(this, head_index, state, tree))
return true;
this->heads[head_index] = stack_node_new(this->heads[head_index], state, tree);
return false;
int ts_parse_stack_entry_next_count(const ParseStackEntry *entry) {
return ((const ParseStackNode *)entry)->successor_count;
}
#define MAX_PATH_COUNT 8
bool ts_parse_stack_reduce(ParseStack *this, int head_index, TSStateId state,
TSSymbol symbol, int child_count) {
int path_count = 1;
ParseStackNode *nodes_by_path[MAX_PATH_COUNT] = {this->heads[head_index]};
TreeVector children_by_path[MAX_PATH_COUNT] = {tree_vector_new(child_count)};
size_t child_counts_by_path[MAX_PATH_COUNT] = {child_count};
/*
* Reduce along every possible path in parallel. Stop when the given number
* of child trees have been collected along every path.
*/
bool all_paths_done = false;
while (!all_paths_done) {
all_paths_done = true;
int current_path_count = path_count;
for (int path = 0; path < current_path_count; path++) {
if (children_by_path[path].size == child_counts_by_path[path])
continue;
else
all_paths_done = false;
/*
* Children that are 'extra' do not count towards the total child count.
*/
ParseStackNode *node = nodes_by_path[path];
if (ts_tree_is_extra(node->tree))
child_counts_by_path[path]++;
/*
* If a node has more than one successor, create new paths for each of
* the additional successors.
*/
tree_vector_push(&children_by_path[path], node->tree);
for (int i = 0; i < node->successor_count; i++) {
int next_path;
if (i > 0) {
if (path_count == MAX_PATH_COUNT) break;
next_path = path_count;
child_counts_by_path[next_path] = child_counts_by_path[path];
children_by_path[next_path] = tree_vector_copy(&children_by_path[path]);
path_count++;
} else {
next_path = path;
}
nodes_by_path[next_path] = node->successors[i];
}
}
}
TSTree *parent;
if (path_count > 1) {
TSTree **trees_by_path = malloc(path_count * sizeof(TSTree *));
for (int path = 0; path < path_count; path++) {
stack_node_retain(nodes_by_path[path]);
tree_vector_reverse(&children_by_path[path]);
trees_by_path[path] = ts_tree_make_node(
symbol,
child_counts_by_path[path],
children_by_path[path].contents,
false
);
parent = ts_tree_make_ambiguity(path_count, trees_by_path);
}
} else {
stack_node_retain(nodes_by_path[0]);
tree_vector_reverse(&children_by_path[0]);
parent = ts_tree_make_node(
symbol,
child_counts_by_path[0],
children_by_path[0].contents,
false
);
}
stack_node_release(this->heads[head_index]);
this->heads[head_index] = nodes_by_path[0];
if (parse_stack_merge_head(this, head_index, state, parent))
return true;
this->heads[head_index] = stack_node_new(nodes_by_path[0], state, parent);
for (int i = 1; i < path_count; i++) {
stack_node_add_successor(this->heads[head_index], nodes_by_path[i]);
}
return false;
}
int ts_parse_stack_split(ParseStack *this, int head_index) {
assert(head_index < this->head_count);
if (this->head_count == this->head_capacity) {
this->head_capacity += 3;
this->heads = realloc(this->heads, this->head_capacity * sizeof(ParseStackNode *));
}
int new_index = this->head_count++;
this->heads[new_index] = this->heads[head_index];
stack_node_retain(this->heads[new_index]);
return new_index;
const ParseStackEntry *ts_parse_stack_entry_next(const ParseStackEntry *entry, int i) {
return &((const ParseStackNode *)entry)->successors[i]->entry;
}
/*
* Section: Private
* Section: Manipulating nodes (Private)
*/
static ParseStackNode *stack_node_new(ParseStackNode *next, TSStateId state, TSTree *tree) {
ParseStackNode *this = malloc(sizeof(ParseStackNode));
*this = (ParseStackNode) {
.ref_count = 1,
.successor_count = 1,
.successors = {next, NULL, NULL},
.state = state,
.tree = tree,
};
return this;
}
static void stack_node_retain(ParseStackNode *this) {
if (!this) return;
assert(this->ref_count != 0);
@ -198,7 +80,7 @@ static bool stack_node_release(ParseStackNode *this) {
if (this->ref_count == 0) {
for (int i = 0; i < this->successor_count; i++)
stack_node_release(this->successors[i]);
ts_tree_release(this->tree);
ts_tree_release(this->entry.tree);
free(this);
return true;
} else {
@ -206,33 +88,69 @@ static bool stack_node_release(ParseStackNode *this) {
}
}
static ParseStackNode *stack_node_new(ParseStackNode *next, TSStateId state, TSTree *tree) {
ParseStackNode *this = malloc(sizeof(ParseStackNode));
ts_tree_retain(tree);
stack_node_retain(next);
*this = (ParseStackNode) {
.ref_count = 1,
.successor_count = 1,
.successors = {next, NULL, NULL},
.entry = {
.state = state,
.tree = tree,
},
};
return this;
}
static void stack_node_add_successor(ParseStackNode *this, ParseStackNode *successor) {
stack_node_retain(successor);
for (int i = 0; i < this->successor_count; i++)
if (this->successors[i] == successor)
return;
stack_node_retain(successor);
this->successors[this->successor_count] = successor;
this->successor_count++;
}
static bool parse_stack_merge_head(ParseStack *this, int head_index, TSStateId state, TSTree *tree) {
/*
* Section: Mutating the stack (Private)
*/
static int ts_parse_stack_add_head(ParseStack *this, ParseStackNode *node) {
if (this->head_count == this->head_capacity) {
this->head_capacity += 3;
this->heads = realloc(this->heads, this->head_capacity * sizeof(ParseStackNode *));
}
int new_index = this->head_count++;
this->heads[new_index] = node;
stack_node_retain(node);
return new_index;
}
static void ts_parse_stack_remove_head(ParseStack *this, int head_index) {
stack_node_release(this->heads[head_index]);
for (int i = head_index; i < this->head_count - 1; i++) {
this->heads[head_index] = this->heads[head_index + 1];
}
this->head_count--;
}
static bool ts_parse_stack_merge_head(ParseStack *this, int head_index, TSStateId state, TSTree *tree) {
for (int i = 0; i < head_index; i++) {
ParseStackNode *head = this->heads[i];
if (head->state == state) {
if (head->tree == tree) {
if (head->entry.state == state) {
if (head->entry.tree == tree) {
stack_node_add_successor(head, this->heads[head_index]);
parse_stack_remove_head(this, head_index);
ts_parse_stack_remove_head(this, head_index);
return true;
}
if (head->tree->symbol == tree->symbol &&
ts_length_eq(head->tree->size, tree->size)) {
} else {
TSTree **options = malloc(2 * sizeof(TSTree *));
options[0] = head->tree;
options[0] = head->entry.tree;
options[1] = tree;
head->tree = ts_tree_make_ambiguity(2, options);
head->entry.tree = ts_tree_make_ambiguity(2, options);
stack_node_add_successor(head, this->heads[head_index]);
parse_stack_remove_head(this, head_index);
ts_parse_stack_remove_head(this, head_index);
return true;
}
}
@ -240,10 +158,96 @@ static bool parse_stack_merge_head(ParseStack *this, int head_index, TSStateId s
return false;
}
static void parse_stack_remove_head(ParseStack *this, int head_index) {
stack_node_release(this->heads[head_index]);
for (int i = head_index; i < this->head_count - 1; i++) {
this->heads[head_index] = this->heads[head_index + 1];
}
this->head_count--;
/*
* Section: Mutating the stack (Public)
*/
bool ts_parse_stack_push(ParseStack *this, int head_index, TSStateId state, TSTree *tree) {
assert(head_index < this->head_count);
if (ts_parse_stack_merge_head(this, head_index, state, tree))
return true;
this->heads[head_index] = stack_node_new(this->heads[head_index], state, tree);
return false;
}
int ts_parse_stack_split(ParseStack *this, int head_index) {
assert(head_index < this->head_count);
return ts_parse_stack_add_head(this, this->heads[head_index]);
}
ParseStackPopResultList ts_parse_stack_pop(ParseStack *this, int head_index, int child_count) {
ParseStackNode *previous_head = this->heads[head_index];
int path_count = 1;
size_t tree_counts_by_path[MAX_POP_PATH_COUNT] = {child_count};
TreeVector trees_by_path[MAX_POP_PATH_COUNT] = {tree_vector_new(child_count)};
ParseStackNode *nodes_by_path[MAX_POP_PATH_COUNT] = {previous_head};
/*
* Reduce along every possible path in parallel. Stop when the given number
* of child trees have been collected along every path.
*/
bool all_paths_done = false;
while (!all_paths_done) {
all_paths_done = true;
int current_path_count = path_count;
for (int path = 0; path < current_path_count; path++) {
if (trees_by_path[path].size == tree_counts_by_path[path])
continue;
else
all_paths_done = false;
/*
* Children that are 'extra' do not count towards the total child count.
*/
ParseStackNode *node = nodes_by_path[path];
if (ts_tree_is_extra(node->entry.tree))
tree_counts_by_path[path]++;
/*
* If a node has more than one successor, create new paths for each of
* the additional successors.
*/
tree_vector_push(&trees_by_path[path], node->entry.tree);
for (int i = 0; i < node->successor_count; i++) {
int next_path;
if (i > 0) {
if (path_count == MAX_POP_PATH_COUNT) break;
next_path = path_count;
tree_counts_by_path[next_path] = tree_counts_by_path[path];
trees_by_path[next_path] = tree_vector_copy(&trees_by_path[path]);
path_count++;
} else {
next_path = path;
}
nodes_by_path[next_path] = node->successors[i];
}
}
}
for (int path = 0; path < path_count; path++) {
tree_vector_reverse(&trees_by_path[path]);
int index;
if (path == 0) {
stack_node_retain(nodes_by_path[path]);
this->heads[head_index] = nodes_by_path[path];
index = head_index;
} else {
index = ts_parse_stack_add_head(this, nodes_by_path[path]);
}
this->last_pop_results[path] = (ParseStackPopResult) {
.index = index,
.tree_count = trees_by_path[path].size,
.trees = trees_by_path[path].contents,
};
}
stack_node_release(previous_head);
return (ParseStackPopResultList) {
.size = path_count,
.contents = this->last_pop_results,
};
}

View file

@ -9,23 +9,73 @@ extern "C" {
typedef struct ParseStack ParseStack;
typedef struct ParseStackNode {
typedef struct {
TSTree *tree;
TSStateId state;
struct ParseStackNode *successors[4];
short unsigned int successor_count;
short unsigned int ref_count;
} ParseStackNode;
} ParseStackEntry;
typedef struct {
int index;
int tree_count;
TSTree **trees;
} ParseStackPopResult;
typedef struct {
int size;
ParseStackPopResult *contents;
} ParseStackPopResultList;
/*
* Create a ParseStack.
*/
ParseStack *ts_parse_stack_new();
/*
* Release any resources reserved by a parse stack.
*/
void ts_parse_stack_delete(ParseStack *);
ParseStackNode *ts_parse_stack_head(const ParseStack *, int);
/*
* Get the stack's current number of heads.
*/
int ts_parse_stack_head_count(const ParseStack *);
bool ts_parse_stack_shift(ParseStack *, int, TSStateId, TSTree *);
bool ts_parse_stack_reduce(ParseStack *, int, TSStateId, TSSymbol, int);
int ts_parse_stack_split(ParseStack *, int);
/*
* Get the tree and state that are at the top of the given stack head.
*/
const ParseStackEntry *ts_parse_stack_head(const ParseStack *, int head);
/*
* Get the number of successors for a given parse stack entry.
*/
int ts_parse_stack_entry_next_count(const ParseStackEntry *);
/*
* Get the nth successor to a given parse stack entry.
*/
const ParseStackEntry *ts_parse_stack_entry_next(const ParseStackEntry *, int);
/*
* Push a (tree, state) pair onto the given head of the stack. Returns
* a boolean indicating whether the stack head was merged with an
* existing head.
*/
bool ts_parse_stack_push(ParseStack *, int head, TSStateId, TSTree *);
/*
* Pop the given number of entries from the given head of the stack. This
* operation can increase the number of stack heads by revealing multiple heads
* which had previously been merged. It returns a struct that indicates the
* index of each revealed head and the trees removed from that head.
*/
ParseStackPopResultList ts_parse_stack_pop(ParseStack *, int head, int count);
/*
* Split the given stack head into two heads, so that the stack can be
* transformed from its current state in multiple alternative ways. Returns
* the index of the newly-created head.
*/
int ts_parse_stack_split(ParseStack *, int head);
#ifdef __cplusplus
}

View file

@ -153,6 +153,12 @@ TSLength ts_tree_total_size(const TSTree *tree) {
}
bool ts_tree_eq(const TSTree *node1, const TSTree *node2) {
if (node1) {
if (!node2) return false;
} else {
return !node2;
}
if (node1->symbol != node2->symbol)
return false;
if (node1->symbol == ts_builtin_sym_error)