#include "tree_sitter/parser.h" #include "runtime/tree.h" #include "runtime/tree_vector.h" #include "runtime/stack.h" #include "runtime/length.h" #include #define MAX_POP_PATH_COUNT 8 #define INITIAL_HEAD_CAPACITY 3 #define STARTING_TREE_CAPACITY 10 typedef struct StackNode { StackEntry entry; struct StackNode *successors[MAX_POP_PATH_COUNT]; short unsigned int successor_count; short unsigned int ref_count; } StackNode; struct Stack { StackNode **heads; int head_count; int head_capacity; StackPopResult last_pop_results[MAX_POP_PATH_COUNT]; TreeSelectionCallback tree_selection_callback; }; /* * Section: Stack lifecycle */ Stack *ts_stack_new(TreeSelectionCallback tree_selection_callback) { Stack *self = malloc(sizeof(Stack)); *self = (Stack){ .heads = calloc(INITIAL_HEAD_CAPACITY, sizeof(StackNode *)), .head_count = 1, .head_capacity = INITIAL_HEAD_CAPACITY, .tree_selection_callback = tree_selection_callback, }; return self; } void ts_stack_delete(Stack *self) { free(self->heads); free(self); } /* * Section: Reading from the stack */ TSStateId ts_stack_top_state(const Stack *self, int head) { StackEntry *entry = ts_stack_head((Stack *)self, head); return entry ? entry->state : 0; } TSTree *ts_stack_top_tree(const Stack *self, int head) { StackEntry *entry = ts_stack_head((Stack *)self, head); return entry ? entry->tree : NULL; } StackEntry *ts_stack_head(Stack *self, int head) { assert(head < self->head_count); StackNode *node = self->heads[head]; return node ? &node->entry : NULL; } int ts_stack_head_count(const Stack *self) { return self->head_count; } int ts_stack_entry_next_count(const StackEntry *entry) { return ((const StackNode *)entry)->successor_count; } StackEntry *ts_stack_entry_next(const StackEntry *entry, int i) { return &((const StackNode *)entry)->successors[i]->entry; } /* * Section: Manipulating nodes (Private) */ static void stack_node_retain(StackNode *self) { if (!self) return; assert(self->ref_count != 0); self->ref_count++; } static bool stack_node_release(StackNode *self) { if (!self) return false; assert(self->ref_count != 0); self->ref_count--; if (self->ref_count == 0) { for (int i = 0; i < self->successor_count; i++) stack_node_release(self->successors[i]); ts_tree_release(self->entry.tree); free(self); return true; } else { return false; } } static StackNode *stack_node_new(StackNode *next, TSStateId state, TSTree *tree) { StackNode *self = malloc(sizeof(StackNode)); assert(tree->ref_count > 0); ts_tree_retain(tree); stack_node_retain(next); *self = (StackNode){ .ref_count = 1, .successor_count = 1, .successors = { next, NULL, NULL }, .entry = { .state = state, .tree = tree, }, }; return self; } static void ts_stack__add_node_successor(Stack *self, StackNode *node, StackNode *new_successor) { for (int i = 0; i < node->successor_count; i++) { StackNode *successor = node->successors[i]; if (!successor) continue; if (successor == new_successor) return; if (successor->entry.state == new_successor->entry.state) { if (successor->entry.tree != new_successor->entry.tree) { successor->entry.tree = self->tree_selection_callback.callback( self->tree_selection_callback.data, successor->entry.tree, new_successor->entry.tree); ts_tree_retain(successor->entry.tree); } for (int j = 0; j < new_successor->successor_count; j++) ts_stack__add_node_successor(self, successor, new_successor->successors[j]); return; } } stack_node_retain(new_successor); node->successors[node->successor_count] = new_successor; node->successor_count++; } /* * Section: Mutating the stack (Private) */ static int ts_stack__add_head(Stack *self, StackNode *node) { if (self->head_count == self->head_capacity) { self->head_capacity += 3; self->heads = realloc(self->heads, self->head_capacity * sizeof(StackNode *)); } int new_index = self->head_count++; self->heads[new_index] = node; stack_node_retain(node); return new_index; } static int ts_stack__find_or_add_head(Stack *self, StackNode *node) { for (int i = 0; i < self->head_count; i++) if (self->heads[i] == node) { return i; } return ts_stack__add_head(self, node); } void ts_stack_remove_head(Stack *self, int head_index) { stack_node_release(self->heads[head_index]); for (int i = head_index; i < self->head_count - 1; i++) self->heads[i] = self->heads[i + 1]; self->head_count--; } static bool ts_stack__merge_head(Stack *self, int head_index, TSStateId state, TSTree *tree) { for (int i = 0; i < head_index; i++) { StackNode *head = self->heads[i]; if (head->entry.state == state) { if (head->entry.tree != tree) { head->entry.tree = self->tree_selection_callback.callback( self->tree_selection_callback.data, head->entry.tree, tree); ts_tree_retain(head->entry.tree); } ts_stack__add_node_successor(self, head, self->heads[head_index]); ts_stack_remove_head(self, head_index); return true; } } return false; } /* * Section: Mutating the stack (Public) */ bool ts_stack_push(Stack *self, int head_index, TSStateId state, TSTree *tree) { assert(head_index < self->head_count); if (ts_stack__merge_head(self, head_index, state, tree)) return true; self->heads[head_index] = stack_node_new(self->heads[head_index], state, tree); return false; } void ts_stack_add_alternative(Stack *self, int head_index, TSTree *tree) { assert(head_index < self->head_count); StackEntry *entry = &self->heads[head_index]->entry; entry->tree = self->tree_selection_callback.callback( self->tree_selection_callback.data, entry->tree, tree); } int ts_stack_split(Stack *self, int head_index) { assert(head_index < self->head_count); return ts_stack__add_head(self, self->heads[head_index]); } StackPopResultList ts_stack_pop(Stack *self, int head_index, int child_count, bool count_extra) { StackNode *previous_head = self->heads[head_index]; int path_count = 1; int capacity = (child_count == -1) ? STARTING_TREE_CAPACITY : child_count; size_t tree_counts_by_path[MAX_POP_PATH_COUNT] = { child_count }; StackNode *nodes_by_path[MAX_POP_PATH_COUNT] = { previous_head }; TreeVector trees_by_path[MAX_POP_PATH_COUNT] = { tree_vector_new(capacity) }; bool is_shared_by_path[MAX_POP_PATH_COUNT] = { false }; /* * Reduce along every possible path in parallel. Stop when the given number * of child trees have been collected along every path. */ bool all_paths_done = false; while (!all_paths_done) { all_paths_done = true; int current_path_count = path_count; for (int path = 0; path < current_path_count; path++) { StackNode *node = nodes_by_path[path]; if (!node || (trees_by_path[path].size == tree_counts_by_path[path])) continue; all_paths_done = false; /* * Children that are 'extra' do not count towards the total child count. */ if (ts_tree_is_extra(node->entry.tree) && !count_extra) tree_counts_by_path[path]++; /* * If a node has more than one successor, create new paths for each of * the additional successors. */ if (is_shared_by_path[path]) { trees_by_path[path] = tree_vector_copy(&trees_by_path[path]); is_shared_by_path[path] = false; } tree_vector_push(&trees_by_path[path], node->entry.tree); for (int i = 0; i < node->successor_count; i++) { int next_path; if (i > 0) { if (path_count == MAX_POP_PATH_COUNT) break; next_path = path_count; tree_counts_by_path[next_path] = tree_counts_by_path[path]; trees_by_path[next_path] = trees_by_path[path]; is_shared_by_path[next_path] = true; path_count++; } else { next_path = path; } nodes_by_path[next_path] = node->successors[i]; } } } for (int path = 0; path < path_count; path++) { if (!is_shared_by_path[path]) tree_vector_reverse(&trees_by_path[path]); int index = -1; if (path == 0) { stack_node_retain(nodes_by_path[path]); self->heads[head_index] = nodes_by_path[path]; index = head_index; } else { index = ts_stack__find_or_add_head(self, nodes_by_path[path]); } self->last_pop_results[path] = (StackPopResult){ .index = index, .tree_count = trees_by_path[path].size, .trees = trees_by_path[path].contents, }; } stack_node_release(previous_head); return (StackPopResultList){ .size = path_count, .contents = self->last_pop_results, }; } void ts_stack_shrink(Stack *self, int head_index, int count) { StackNode *head = self->heads[head_index]; StackNode *new_head = head; for (int i = 0; i < count; i++) { if (new_head->successor_count == 0) break; new_head = new_head->successors[0]; } stack_node_retain(new_head); stack_node_release(head); self->heads[head_index] = new_head; } void ts_stack_clear(Stack *self) { for (int i = 0; i < self->head_count; i++) stack_node_release(self->heads[i]); self->head_count = 1; self->heads[0] = NULL; }