#include "tree_sitter/parser.h" #include "runtime/alloc.h" #include "runtime/tree.h" #include "runtime/array.h" #include "runtime/stack.h" #include "runtime/length.h" #include #include #define MAX_SUCCESSOR_COUNT 8 #define STARTING_TREE_CAPACITY 10 #define MAX_NODE_POOL_SIZE 50 #define ALWAYS_INLINE __attribute__((always_inline)) typedef struct StackNode StackNode; typedef struct { StackNode *node; TSTree *tree; bool is_pending; } StackLink; struct StackNode { TSStateId state; TSLength position; StackLink successors[MAX_SUCCESSOR_COUNT]; short unsigned int successor_count; short unsigned int ref_count; }; typedef struct { TreeArray trees; size_t essential_tree_count; StackNode *node; bool is_done; bool is_pending; } PopPath; typedef struct { size_t goal_tree_count; bool found_error; } StackPopSession; typedef Array(StackNode *) StackNodeArray; struct Stack { Array(StackNode *) heads; StackSliceArray slices; Array(PopPath) pop_paths; StackNodeArray node_pool; void *tree_selection_payload; TreeSelectionFunction tree_selection_function; StackNode *base_node; }; static const char *COLORS[] = { "red", "blue", "orange", "green", "purple", }; /* * Section: Manipulating nodes (Private) */ static void stack_node_retain(StackNode *self) { if (!self) return; assert(self->ref_count != 0); self->ref_count++; } static void stack_node_release(StackNode *self, StackNodeArray *pool) { if (!self) return; assert(self->ref_count != 0); self->ref_count--; if (self->ref_count == 0) { for (int i = 0; i < self->successor_count; i++) { ts_tree_release(self->successors[i].tree); stack_node_release(self->successors[i].node, pool); } if (pool->size >= MAX_NODE_POOL_SIZE) ts_free(self); else array_push(pool, self); } } static StackNode *stack_node_new(StackNode *next, TSTree *tree, bool is_pending, TSStateId state, TSLength position, StackNodeArray *pool) { StackNode *node; if (pool->size > 0) node = array_pop(pool); else if (!(node = ts_malloc(sizeof(StackNode)))) return NULL; *node = (StackNode){ .ref_count = 1, .successor_count = 0, .successors = {}, .state = state, .position = position, }; if (next) { ts_tree_retain(tree); stack_node_retain(next); node->successor_count = 1; node->successors[0] = (StackLink){ next, tree, is_pending }; } return node; } static void stack_node_add_link(StackNode *self, StackLink link) { for (int i = 0; i < self->successor_count; i++) { StackLink existing_link = self->successors[i]; if (existing_link.tree == link.tree) { if (existing_link.node == link.node) return; if (existing_link.node->state == link.node->state) { for (int j = 0; j < link.node->successor_count; j++) stack_node_add_link(existing_link.node, link.node->successors[j]); return; } } } if (self->successor_count < MAX_SUCCESSOR_COUNT) { stack_node_retain(link.node); ts_tree_retain(link.tree); self->successors[self->successor_count++] = (StackLink){ link.node, link.tree, link.is_pending, }; } } /* * Section: Stack lifecycle */ static int ts_stack__default_tree_selection(void *p, TSTree *t1, TSTree *t2) { return 0; } Stack *ts_stack_new() { Stack *self = ts_calloc(1, sizeof(Stack)); if (!self) goto error; array_init(&self->heads); array_init(&self->slices); array_init(&self->pop_paths); array_init(&self->node_pool); self->tree_selection_payload = NULL; self->tree_selection_function = ts_stack__default_tree_selection; if (!array_grow(&self->heads, 4)) goto error; if (!array_grow(&self->slices, 4)) goto error; if (!array_grow(&self->pop_paths, 4)) goto error; if (!array_grow(&self->node_pool, 20)) goto error; self->base_node = stack_node_new(NULL, NULL, false, 0, ts_length_zero(), &self->node_pool); stack_node_retain(self->base_node); if (!self->base_node) goto error; array_push(&self->heads, self->base_node); return self; error: if (self) { if (self->heads.contents) array_delete(&self->heads); if (self->slices.contents) array_delete(&self->slices); if (self->pop_paths.contents) array_delete(&self->pop_paths); if (self->node_pool.contents) array_delete(&self->node_pool); ts_free(self); } return NULL; } /* * Section: Reading from the stack */ TSStateId ts_stack_top_state(const Stack *self, StackVersion version) { return (*array_get(&self->heads, version))->state; } TSLength ts_stack_top_position(const Stack *self, StackVersion version) { return (*array_get(&self->heads, version))->position; } size_t ts_stack_version_count(const Stack *self) { return self->heads.size; } static void ts_stack__merge_slice(Stack *self, StackSlice *slice, StackSlice *new_slice) { bool should_update = false; if (slice->trees.size < new_slice->trees.size) { should_update = true; } else if (slice->trees.size == new_slice->trees.size) { for (size_t i = 0; i < slice->trees.size; i++) { TSTree *tree = slice->trees.contents[i]; TSTree *new_tree = new_slice->trees.contents[i]; int comparison = self->tree_selection_function( self->tree_selection_payload, tree, new_tree); if (comparison < 0) { break; } else if (comparison > 0) { should_update = true; break; } } } if (should_update) { ts_tree_array_delete(&slice->trees); slice->trees = new_slice->trees; slice->trees.size = new_slice->trees.size; } else { ts_tree_array_delete(&new_slice->trees); } } /* * Section: Mutating the stack (Private) */ static StackVersion ts_stack__add_version(Stack *self, StackNode *node) { if (!array_push(&self->heads, node)) return STACK_VERSION_NONE; stack_node_retain(node); return (StackVersion)(self->heads.size - 1); } void ts_stack_remove_version(Stack *self, StackVersion version) { StackNode *node = *array_get(&self->heads, version); stack_node_release(node, &self->node_pool); array_erase(&self->heads, version); } /* * Section: Mutating the stack (Public) */ bool ts_stack_push(Stack *self, StackVersion version, TSTree *tree, bool is_pending, TSStateId state) { StackNode *node = *array_get(&self->heads, version); TSLength position = ts_length_add(node->position, ts_tree_total_size(tree)); StackNode *new_node = stack_node_new(node, tree, is_pending, state, position, &self->node_pool); if (!new_node) return false; stack_node_release(node, &self->node_pool); self->heads.contents[version] = new_node; return true; } void ts_stack_merge(Stack *self) { for (size_t i = 0; i < self->heads.size; i++) { StackNode *node = self->heads.contents[i]; for (size_t j = 0; j < i; j++) { StackNode *prior_node = self->heads.contents[j]; if (prior_node->state == node->state && prior_node->position.chars == node->position.chars) { for (size_t k = 0; k < node->successor_count; k++) { StackLink successor = node->successors[k]; stack_node_add_link(prior_node, successor); } ts_stack_remove_version(self, i--); break; } } } } void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2) { assert(v2 < v1); assert((size_t)v1 < self->heads.size); stack_node_release(self->heads.contents[v2], &self->node_pool); self->heads.contents[v2] = self->heads.contents[v1]; array_erase(&self->heads, v1); } static inline ALWAYS_INLINE StackPopResult stack__pop(Stack *self, StackVersion version, StackIterateCallback callback, void *payload) { array_clear(&self->slices); array_clear(&self->pop_paths); PopPath pop_path = { .node = *array_get(&self->heads, version), .trees = array_new(), .essential_tree_count = 0, .is_done = false, .is_pending = true, }; if (!array_push(&self->pop_paths, pop_path)) goto error; bool all_paths_done = false; for (size_t depth = 0; !all_paths_done; depth++) { all_paths_done = true; for (size_t i = 0, size = self->pop_paths.size; i < size; i++) { PopPath *path = &self->pop_paths.contents[i]; if (path->is_done) continue; StackNode *node = path->node; size_t successor_count = node->successor_count; switch (callback(payload, node->state, path->essential_tree_count, node == self->base_node, path->is_pending && depth > 0)) { case StackIteratePop: path->is_done = true; continue; case StackIterateAbort: successor_count = 0; break; default: break; } if (!successor_count) { ts_tree_array_delete(&path->trees); array_erase(&self->pop_paths, i--); size--; continue; } all_paths_done = false; for (size_t j = 1; j <= successor_count; j++) { PopPath *next_path; StackLink successor; if (j == successor_count) { successor = node->successors[0]; next_path = &self->pop_paths.contents[i]; } else { successor = node->successors[j]; if (!array_push(&self->pop_paths, self->pop_paths.contents[i])) goto error; next_path = array_back(&self->pop_paths); next_path->trees = ts_tree_array_copy(&next_path->trees); } next_path->node = successor.node; if (!array_push(&next_path->trees, successor.tree)) goto error; if (!successor.tree->extra && successor.tree->symbol != ts_builtin_sym_error) next_path->essential_tree_count++; if (!successor.is_pending) next_path->is_pending = false; ts_tree_retain(successor.tree); } } } for (size_t i = 0; i < self->pop_paths.size; i++) { PopPath *path = &self->pop_paths.contents[i]; if (!path->is_done) continue; StackSlice slice = {.trees = path->trees, .version = STACK_VERSION_NONE }; array_reverse(&slice.trees); bool merged = false; for (size_t j = 0; j < self->slices.size; j++) { StackSlice *prior_slice = &self->slices.contents[j]; StackNode *prior_node = self->heads.contents[prior_slice->version]; if (prior_node == path->node) { ts_stack__merge_slice(self, prior_slice, &slice); merged = true; break; } } if (!merged) { slice.version = ts_stack__add_version(self, path->node); if (slice.version == STACK_VERSION_NONE) goto error; if (!array_push(&self->slices, slice)) goto error; } } return (StackPopResult){.status = StackPopSucceeded, .slices = self->slices }; error: for (size_t i = 0; i < self->pop_paths.size; i++) array_delete(&self->pop_paths.contents[i].trees); array_clear(&self->slices); return (StackPopResult){.status = StackPopFailed }; } StackPopResult ts_stack_pop_until(Stack *self, StackVersion version, StackIterateCallback callback, void *payload) { return stack__pop(self, version, callback, payload); } static inline ALWAYS_INLINE StackIterateAction stack__pop_count_callback(void *payload, TSStateId state, size_t tree_count, bool is_done, bool is_pending) { StackPopSession *pop_session = (StackPopSession *)payload; if (pop_session->found_error) return StackIterateAbort; if (tree_count == pop_session->goal_tree_count) return StackIteratePop; if (state == ts_parse_state_error) { pop_session->found_error = true; return StackIteratePop; } return StackIterateContinue; } StackPopResult ts_stack_pop_count(Stack *self, StackVersion version, size_t count) { StackPopSession session = {.goal_tree_count = count, .found_error = false }; StackPopResult pop = stack__pop(self, version, stack__pop_count_callback, &session); if (pop.status && session.found_error) { pop.status = StackPopStoppedAtError; array_reverse(&pop.slices); while (pop.slices.size > 1) { StackSlice slice = array_pop(&pop.slices); ts_tree_array_delete(&slice.trees); ts_stack_remove_version(self, slice.version); } } return pop; } static inline ALWAYS_INLINE StackIterateAction stack__pop_pending_callback(void *payload, TSStateId state, size_t tree_count, bool is_done, bool is_pending) { if (tree_count >= 1) return is_pending ? StackIteratePop : StackIterateAbort; else return StackIterateContinue; } StackPopResult ts_stack_pop_pending(Stack *self, StackVersion version) { StackPopResult pop = stack__pop(self, version, stack__pop_pending_callback, NULL); if (pop.slices.size > 0) { ts_stack_renumber_version(self, pop.slices.contents[0].version, version); pop.slices.contents[0].version = version; } return pop; } static inline ALWAYS_INLINE StackIterateAction stack__pop_all_callback(void *payload, TSStateId state, size_t tree_count, bool is_done, bool is_pending) { return is_done ? StackIteratePop : StackIterateContinue; } TreeArray ts_stack_pop_all(Stack *self, StackVersion version) { StackPopResult pop = stack__pop(self, version, stack__pop_all_callback, NULL); if (pop.status != StackPopSucceeded) return (TreeArray)array_new(); assert(pop.slices.size == 1); ts_stack_renumber_version(self, pop.slices.contents[0].version, version); return pop.slices.contents[0].trees; } void ts_stack_clear(Stack *self) { stack_node_retain(self->base_node); for (size_t i = 0; i < self->heads.size; i++) stack_node_release(self->heads.contents[i], &self->node_pool); array_clear(&self->heads); array_push(&self->heads, self->base_node); } void ts_stack_set_tree_selection_callback(Stack *self, void *payload, TreeSelectionFunction function) { self->tree_selection_payload = payload; self->tree_selection_function = function; } void ts_stack_delete(Stack *self) { if (self->pop_paths.contents) array_delete(&self->slices); if (self->pop_paths.contents) array_delete(&self->pop_paths); stack_node_release(self->base_node, &self->node_pool); for (size_t i = 0; i < self->heads.size; i++) stack_node_release(self->heads.contents[i], &self->node_pool); array_clear(&self->heads); if (self->node_pool.contents) { for (size_t i = 0; i < self->node_pool.size; i++) ts_free(self->node_pool.contents[i]); array_delete(&self->node_pool); } array_delete(&self->heads); ts_free(self); } int ts_stack_print_dot_graph(Stack *self, const char **symbol_names, FILE *f) { fprintf(f, "digraph stack {\n"); fprintf(f, "rankdir=\"RL\";\n"); Array(StackNode *)visited_nodes; array_init(&visited_nodes); array_clear(&self->pop_paths); for (size_t i = 0; i < self->heads.size; i++) { StackNode *node = self->heads.contents[i]; size_t color_count = sizeof(COLORS) / sizeof(COLORS[0]); const char *color = COLORS[i % color_count]; fprintf(f, "node_%p [color=%s];\n", node, color); array_push(&self->pop_paths, ((PopPath){.node = node })); } bool all_paths_done = false; while (!all_paths_done) { all_paths_done = true; for (size_t i = 0; i < self->pop_paths.size; i++) { PopPath *path = &self->pop_paths.contents[i]; StackNode *node = path->node; for (size_t j = 0; j < visited_nodes.size; j++) { if (visited_nodes.contents[j] == node) { node = NULL; break; } } if (!node) continue; all_paths_done = false; fprintf(f, "node_%p [label=", node); if (node->state == ts_parse_state_error) fprintf(f, "\"?\""); else fprintf(f, "%d", node->state); fprintf(f, "];\n"); for (int j = 0; j < node->successor_count; j++) { StackLink successor = node->successors[j]; fprintf(f, "node_%p -> node_%p [", node, successor.node); if (successor.is_pending) fprintf(f, "style=dashed "); fprintf(f, "label=\""); if (successor.tree->symbol == ts_builtin_sym_error) { fprintf(f, "ERROR"); } else { const char *name = symbol_names[successor.tree->symbol]; for (const char *c = name; *c; c++) { if (*c == '\"' || *c == '\\') fprintf(f, "\\"); fprintf(f, "%c", *c); } } fprintf(f, "\"];\n"); if (j == 0) { path->node = successor.node; } else { if (!array_push(&self->pop_paths, *path)) goto error; PopPath *next_path = array_back(&self->pop_paths); next_path->node = successor.node; } } if (!array_push(&visited_nodes, node)) goto error; } } fprintf(f, "}\n"); array_delete(&visited_nodes); error: return -1; }