#include #include #include #include #include #include #include "runtime/alloc.h" #include "runtime/atomic.h" #include "runtime/tree.h" #include "runtime/length.h" #include "runtime/language.h" #include "runtime/error_costs.h" TSStateId TS_TREE_STATE_NONE = USHRT_MAX; // ExternalTokenState void ts_external_token_state_init(TSExternalTokenState *self, const char *content, unsigned length) { self->length = length; if (length > sizeof(self->short_data)) { self->long_data = ts_malloc(length); memcpy(self->long_data, content, length); } else { memcpy(self->short_data, content, length); } } void ts_external_token_state_delete(TSExternalTokenState *self) { if (self->length > sizeof(self->short_data)) { ts_free(self->long_data); } } const char *ts_external_token_state_data(const TSExternalTokenState *self) { if (self->length > sizeof(self->short_data)) { return self->long_data; } else { return self->short_data; } } bool ts_external_token_state_eq(const TSExternalTokenState *a, const TSExternalTokenState *b) { return a == b || (a->length == b->length && memcmp(ts_external_token_state_data(a), ts_external_token_state_data(b), a->length) == 0); } // TreeArray bool ts_tree_array_copy(TreeArray self, TreeArray *dest) { Tree **contents = NULL; if (self.capacity > 0) { contents = ts_calloc(self.capacity, sizeof(Tree *)); memcpy(contents, self.contents, self.size * sizeof(Tree *)); for (uint32_t i = 0; i < self.size; i++) ts_tree_retain(contents[i]); } dest->size = self.size; dest->capacity = self.capacity; dest->contents = contents; return true; } void ts_tree_array_delete(TreePool *pool, TreeArray *self) { for (uint32_t i = 0; i < self->size; i++) { ts_tree_release(pool, self->contents[i]); } array_delete(self); } TreeArray ts_tree_array_remove_trailing_extras(TreeArray *self) { TreeArray result = array_new(); uint32_t i = self->size - 1; for (; i + 1 > 0; i--) { Tree *child = self->contents[i]; if (!child->extra) break; array_push(&result, child); } self->size = i + 1; ts_tree_array_reverse(&result); return result; } void ts_tree_array_reverse(TreeArray *self) { for (uint32_t i = 0, limit = self->size / 2; i < limit; i++) { size_t reverse_index = self->size - 1 - i; Tree *swap = self->contents[i]; self->contents[i] = self->contents[reverse_index]; self->contents[reverse_index] = swap; } } // TreePool static const uint32_t MAX_TREE_POOL_SIZE = 1024; void ts_tree_pool_init(TreePool *self) { array_init(&self->free_trees); array_init(&self->tree_stack); } void ts_tree_pool_delete(TreePool *self) { if (self->free_trees.contents) { for (unsigned i = 0; i < self->free_trees.size; i++) { ts_free(self->free_trees.contents[i]); } array_delete(&self->free_trees); } if (self->tree_stack.contents) array_delete(&self->tree_stack); } Tree *ts_tree_pool_allocate(TreePool *self) { if (self->free_trees.size > 0) { return array_pop(&self->free_trees); } else { return ts_malloc(sizeof(Tree)); } } void ts_tree_pool_free(TreePool *self, Tree *tree) { if (self->free_trees.size < MAX_TREE_POOL_SIZE) { array_push(&self->free_trees, tree); } else { ts_free(tree); } } // Tree Tree *ts_tree_make_leaf(TreePool *pool, TSSymbol symbol, Length padding, Length size, const TSLanguage *language) { TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); Tree *result = ts_tree_pool_allocate(pool); *result = (Tree){ .ref_count = 1, .symbol = symbol, .size = size, .visible_child_count = 0, .named_child_count = 0, .alias_sequence_id = 0, .padding = padding, .visible = metadata.visible, .named = metadata.named, .node_count = 1, .has_changes = false, .first_leaf = { .symbol = symbol, .lex_mode = {0, 0}, }, .has_external_tokens = false, }; return result; } Tree *ts_tree_make_error(TreePool *pool, Length size, Length padding, int32_t lookahead_char, const TSLanguage *language) { Tree *result = ts_tree_make_leaf(pool, ts_builtin_sym_error, padding, size, language); result->fragile_left = true; result->fragile_right = true; result->lookahead_char = lookahead_char; return result; } Tree *ts_tree_make_copy(TreePool *pool, Tree *self) { Tree *result = ts_tree_pool_allocate(pool); *result = *self; result->ref_count = 1; return result; } static void ts_tree__compress(Tree *self, unsigned count, const TSLanguage *language, TreeArray *stack) { unsigned initial_stack_size = stack->size; Tree *tree = self; for (unsigned i = 0; i < count; i++) { if (tree->ref_count > 1 || tree->children.size != 2) break; Tree *child = tree->children.contents[0]; if ( child->ref_count > 1 || child->children.size != 2 || child->symbol != tree->symbol ) break; Tree *grandchild = child->children.contents[0]; if ( grandchild->ref_count > 1 || grandchild->children.size != 2 || grandchild->symbol != tree->symbol ) break; tree->children.contents[0] = grandchild; child->children.contents[0] = grandchild->children.contents[1]; grandchild->children.contents[1] = child; array_push(stack, tree); tree = grandchild; } while (stack->size > initial_stack_size) { tree = array_pop(stack); assert(tree); Tree *child = tree->children.contents[0]; Tree *grandchild = child->children.contents[1]; ts_tree_set_children(grandchild, &grandchild->children, language); ts_tree_set_children(child, &child->children, language); ts_tree_set_children(tree, &tree->children, language); } } void ts_tree_balance(Tree *self, TreePool *pool, const TSLanguage *language) { array_clear(&pool->tree_stack); array_push(&pool->tree_stack, self); while (pool->tree_stack.size > 0) { Tree *tree = array_pop(&pool->tree_stack); assert(tree); if (tree->repeat_depth > 0) { if (tree->children.contents[0]->repeat_depth > tree->children.contents[1]->repeat_depth) { unsigned n = ( tree->children.contents[0]->repeat_depth - tree->children.contents[1]->repeat_depth ); for (unsigned i = n / 2; i > 0; i /= 2) { ts_tree__compress(tree, i, language, &pool->tree_stack); n -= i; } } } for (uint32_t i = 0; i < tree->children.size; i++) { Tree *child = tree->children.contents[i]; if (child->ref_count == 1) { array_push(&pool->tree_stack, child); } } } } void ts_tree_set_children(Tree *self, TreeArray *children, const TSLanguage *language) { if (self->children.size > 0 && children->contents != self->children.contents) { array_delete(&self->children); } self->children = *children; self->named_child_count = 0; self->visible_child_count = 0; self->error_cost = 0; self->repeat_depth = 0; self->node_count = 1; self->has_external_tokens = false; self->dynamic_precedence = 0; uint32_t non_extra_index = 0; const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self->alias_sequence_id); for (uint32_t i = 0; i < self->children.size; i++) { Tree *child = self->children.contents[i]; if (i == 0) { self->padding = child->padding; self->size = child->size; self->bytes_scanned = child->bytes_scanned; } else { uint32_t bytes_scanned = ts_tree_total_bytes(self) + child->bytes_scanned; if (bytes_scanned > self->bytes_scanned) self->bytes_scanned = bytes_scanned; self->size = length_add(self->size, ts_tree_total_size(child)); } if (child->symbol != ts_builtin_sym_error_repeat) { self->error_cost += child->error_cost; } self->dynamic_precedence += child->dynamic_precedence; self->node_count += child->node_count; if (alias_sequence && alias_sequence[non_extra_index] != 0 && !child->extra) { self->visible_child_count++; if (ts_language_symbol_metadata(language, alias_sequence[non_extra_index]).named) { self->named_child_count++; } } else if (child->visible) { self->visible_child_count++; if (child->named) self->named_child_count++; } else if (child->children.size > 0) { self->visible_child_count += child->visible_child_count; self->named_child_count += child->named_child_count; } if (child->has_external_tokens) self->has_external_tokens = true; if (child->symbol == ts_builtin_sym_error) { self->fragile_left = self->fragile_right = true; self->parse_state = TS_TREE_STATE_NONE; } if (!child->extra) non_extra_index++; } if (self->symbol == ts_builtin_sym_error || self->symbol == ts_builtin_sym_error_repeat) { self->error_cost += ERROR_COST_PER_RECOVERY + ERROR_COST_PER_SKIPPED_CHAR * self->size.bytes + ERROR_COST_PER_SKIPPED_LINE * self->size.extent.row; for (uint32_t i = 0; i < self->children.size; i++) { Tree *child = self->children.contents[i]; if (child->extra) continue; if (child->symbol == ts_builtin_sym_error && child->children.size == 0) continue; if (child->visible) { self->error_cost += ERROR_COST_PER_SKIPPED_TREE; } else { self->error_cost += ERROR_COST_PER_SKIPPED_TREE * child->visible_child_count; } } } if (self->children.size > 0) { Tree *first_child = self->children.contents[0]; Tree *last_child = self->children.contents[self->children.size - 1]; self->first_leaf = first_child->first_leaf; if (first_child->fragile_left) self->fragile_left = true; if (last_child->fragile_right) self->fragile_right = true; if ( self->children.size == 2 && !self->visible && !self->named && first_child->symbol == self->symbol && last_child->symbol == self->symbol ) { if (first_child->repeat_depth > last_child->repeat_depth) { self->repeat_depth = first_child->repeat_depth + 1; } else { self->repeat_depth = last_child->repeat_depth + 1; } } } } Tree *ts_tree_make_node(TreePool *pool, TSSymbol symbol, TreeArray *children, unsigned alias_sequence_id, const TSLanguage *language) { Tree *result = ts_tree_make_leaf(pool, symbol, length_zero(), length_zero(), language); result->alias_sequence_id = alias_sequence_id; if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { result->fragile_left = true; result->fragile_right = true; } ts_tree_set_children(result, children, language); return result; } Tree *ts_tree_make_error_node(TreePool *pool, TreeArray *children, const TSLanguage *language) { return ts_tree_make_node(pool, ts_builtin_sym_error, children, 0, language); } Tree *ts_tree_make_missing_leaf(TreePool *pool, TSSymbol symbol, const TSLanguage *language) { Tree *result = ts_tree_make_leaf(pool, symbol, length_zero(), length_zero(), language); result->is_missing = true; result->error_cost = ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY; return result; } void ts_tree_retain(Tree *self) { assert(self->ref_count > 0); atomic_inc(&self->ref_count); assert(self->ref_count != 0); } void ts_tree_release(TreePool *pool, Tree *self) { array_clear(&pool->tree_stack); array_push(&pool->tree_stack, self); while (pool->tree_stack.size > 0) { Tree *tree = array_pop(&pool->tree_stack); assert(tree->ref_count > 0); if (atomic_dec(&tree->ref_count) == 0) { if (tree->children.size > 0) { for (uint32_t i = 0; i < tree->children.size; i++) { array_push(&pool->tree_stack, tree->children.contents[i]); } array_delete(&tree->children); } else if (tree->has_external_tokens) { ts_external_token_state_delete(&tree->external_token_state); } ts_tree_pool_free(pool, tree); } } } bool ts_tree_eq(const Tree *self, const Tree *other) { if (self) { if (!other) return false; } else { return !other; } if (self->symbol != other->symbol) return false; if (self->visible != other->visible) return false; if (self->named != other->named) return false; if (self->padding.bytes != other->padding.bytes) return false; if (self->size.bytes != other->size.bytes) return false; if (self->symbol == ts_builtin_sym_error) return self->lookahead_char == other->lookahead_char; if (self->children.size != other->children.size) return false; if (self->visible_child_count != other->visible_child_count) return false; if (self->named_child_count != other->named_child_count) return false; for (uint32_t i = 0; i < self->children.size; i++) { if (!ts_tree_eq(self->children.contents[i], other->children.contents[i])) { return false; } } return true; } int ts_tree_compare(const Tree *left, const Tree *right) { if (left->symbol < right->symbol) return -1; if (right->symbol < left->symbol) return 1; if (left->children.size < right->children.size) return -1; if (right->children.size < left->children.size) return 1; for (uint32_t i = 0; i < left->children.size; i++) { Tree *left_child = left->children.contents[i]; Tree *right_child = right->children.contents[i]; switch (ts_tree_compare(left_child, right_child)) { case -1: return -1; case 1: return 1; default: break; } } return 0; } static inline long min_byte(long a, long b) { return a <= b ? a : b; } bool ts_tree_invalidate_lookahead(Tree *self, uint32_t edit_byte_offset) { if (edit_byte_offset >= self->bytes_scanned) return false; self->has_changes = true; if (self->children.size > 0) { uint32_t child_start_byte = 0; for (uint32_t i = 0; i < self->children.size; i++) { Tree *child = self->children.contents[i]; if (child_start_byte > edit_byte_offset) break; ts_tree_invalidate_lookahead(child, edit_byte_offset - child_start_byte); child_start_byte += ts_tree_total_bytes(child); } } return true; } static inline TSPoint ts_tree_total_extent(const Tree *self) { return point_add(self->padding.extent, self->size.extent); } void ts_tree_edit(Tree *self, const TSInputEdit *edit) { uint32_t old_end_byte = edit->start_byte + edit->bytes_removed; uint32_t new_end_byte = edit->start_byte + edit->bytes_added; TSPoint old_end_point = point_add(edit->start_point, edit->extent_removed); TSPoint new_end_point = point_add(edit->start_point, edit->extent_added); assert(old_end_byte <= ts_tree_total_bytes(self)); self->has_changes = true; if (edit->start_byte < self->padding.bytes) { if (self->padding.bytes >= old_end_byte) { uint32_t trailing_padding_bytes = self->padding.bytes - old_end_byte; TSPoint trailing_padding_extent = point_sub(self->padding.extent, old_end_point); self->padding.bytes = new_end_byte + trailing_padding_bytes; self->padding.extent = point_add(new_end_point, trailing_padding_extent); } else { uint32_t removed_content_bytes = old_end_byte - self->padding.bytes; TSPoint removed_content_extent = point_sub(old_end_point, self->padding.extent); self->size.bytes = self->size.bytes - removed_content_bytes; self->size.extent = point_sub(self->size.extent, removed_content_extent); self->padding.bytes = new_end_byte; self->padding.extent = new_end_point; } } else if (edit->start_byte == self->padding.bytes && edit->bytes_removed == 0) { self->padding.bytes = self->padding.bytes + edit->bytes_added; self->padding.extent = point_add(self->padding.extent, edit->extent_added); } else { uint32_t trailing_content_bytes = ts_tree_total_bytes(self) - old_end_byte; TSPoint trailing_content_extent = point_sub(ts_tree_total_extent(self), old_end_point); self->size.bytes = new_end_byte + trailing_content_bytes - self->padding.bytes; self->size.extent = point_sub(point_add(new_end_point, trailing_content_extent), self->padding.extent); } bool found_first_child = false; long remaining_bytes_to_delete = 0; TSPoint remaining_extent_to_delete = {0, 0}; Length child_left, child_right = length_zero(); for (uint32_t i = 0; i < self->children.size; i++) { Tree *child = self->children.contents[i]; child_left = child_right; child_right = length_add(child_left, ts_tree_total_size(child)); if (!found_first_child && child_right.bytes >= edit->start_byte) { found_first_child = true; TSInputEdit child_edit = { .start_byte = edit->start_byte - child_left.bytes, .bytes_added = edit->bytes_added, .bytes_removed = edit->bytes_removed, .start_point = point_sub(edit->start_point, child_left.extent), .extent_added = edit->extent_added, .extent_removed = edit->extent_removed, }; if (old_end_byte > child_right.bytes) { child_edit.bytes_removed = child_right.bytes - edit->start_byte; child_edit.extent_removed = point_sub(child_right.extent, edit->start_point); remaining_bytes_to_delete = old_end_byte - child_right.bytes; remaining_extent_to_delete = point_sub(old_end_point, child_right.extent); } ts_tree_edit(child, &child_edit); } else if (remaining_bytes_to_delete > 0) { TSInputEdit child_edit = { .start_byte = 0, .bytes_added = 0, .bytes_removed = min_byte(remaining_bytes_to_delete, ts_tree_total_bytes(child)), .start_point = {0, 0}, .extent_added = {0, 0}, .extent_removed = point_min(remaining_extent_to_delete, ts_tree_total_size(child).extent), }; remaining_bytes_to_delete -= child_edit.bytes_removed; remaining_extent_to_delete = point_sub(remaining_extent_to_delete, child_edit.extent_removed); ts_tree_edit(child, &child_edit); } else { ts_tree_invalidate_lookahead(child, edit->start_byte - child_left.bytes); } child_right = length_add(child_left, ts_tree_total_size(child)); } } Tree *ts_tree_last_external_token(Tree *tree) { if (!tree->has_external_tokens) return NULL; while (tree->children.size > 0) { for (uint32_t i = tree->children.size - 1; i + 1 > 0; i--) { Tree *child = tree->children.contents[i]; if (child->has_external_tokens) { tree = child; break; } } } return tree; } static size_t ts_tree__write_char_to_string(char *s, size_t n, int32_t c) { if (c == 0) return snprintf(s, n, "EOF"); if (c == -1) return snprintf(s, n, "INVALID"); else if (c == '\n') return snprintf(s, n, "'\\n'"); else if (c == '\t') return snprintf(s, n, "'\\t'"); else if (c == '\r') return snprintf(s, n, "'\\r'"); else if (0 < c && c < 128 && isprint(c)) return snprintf(s, n, "'%c'", c); else return snprintf(s, n, "%d", c); } static size_t ts_tree__write_to_string(const Tree *self, char *string, size_t limit, const TSLanguage *language, bool is_root, bool include_all, TSSymbol alias_symbol, bool alias_is_named) { if (!self) return snprintf(string, limit, "(NULL)"); char *cursor = string; char **writer = (limit > 0) ? &cursor : &string; bool visible = include_all || is_root || self->is_missing || (self->visible && self->named) || alias_is_named; if (visible && !is_root) { cursor += snprintf(*writer, limit, " "); } if (visible) { if (self->symbol == ts_builtin_sym_error && self->children.size == 0 && self->size.bytes > 0) { cursor += snprintf(*writer, limit, "(UNEXPECTED "); cursor += ts_tree__write_char_to_string(*writer, limit, self->lookahead_char); } else if (self->is_missing) { cursor += snprintf(*writer, limit, "(MISSING"); } else { TSSymbol symbol = alias_symbol ? alias_symbol : self->symbol; const char *symbol_name = ts_language_symbol_name(language, symbol); cursor += snprintf(*writer, limit, "(%s", symbol_name); } } const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self->alias_sequence_id); uint32_t structural_child_index = 0; for (uint32_t i = 0; i < self->children.size; i++) { Tree *child = self->children.contents[i]; if (child->extra) { cursor += ts_tree__write_to_string( child, *writer, limit, language, false, include_all, 0, false ); } else { TSSymbol alias_symbol = alias_sequence ? alias_sequence[structural_child_index] : 0; cursor += ts_tree__write_to_string( child, *writer, limit, language, false, include_all, alias_symbol, alias_symbol ? ts_language_symbol_metadata(language, alias_symbol).named : false ); structural_child_index++; } } if (visible) cursor += snprintf(*writer, limit, ")"); return cursor - string; } char *ts_tree_string(const Tree *self, const TSLanguage *language, bool include_all) { char scratch_string[1]; size_t size = ts_tree__write_to_string( self, scratch_string, 0, language, true, include_all, 0, false ) + 1; char *result = ts_malloc(size * sizeof(char)); ts_tree__write_to_string(self, result, size, language, true, include_all, 0, false); return result; } void ts_tree__print_dot_graph(const Tree *self, uint32_t byte_offset, const TSLanguage *language, TSSymbol alias_symbol, FILE *f) { TSSymbol symbol = alias_symbol ? alias_symbol : self->symbol; fprintf(f, "tree_%p [label=\"%s\"", self, ts_language_symbol_name(language, symbol)); if (self->children.size == 0) fprintf(f, ", shape=plaintext"); if (self->extra) fprintf(f, ", fontcolor=gray"); fprintf(f, ", tooltip=\"address:%p\nrange:%u - %u\nstate:%d\nerror-cost:%u\nrepeat-depth:%u\"]\n", self, byte_offset, byte_offset + ts_tree_total_bytes(self), self->parse_state, self->error_cost, self->repeat_depth); const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self->alias_sequence_id); uint32_t structural_child_index = 0; for (uint32_t i = 0; i < self->children.size; i++) { const Tree *child = self->children.contents[i]; if (child->extra) { ts_tree__print_dot_graph(child, byte_offset, language, 0, f); } else { TSSymbol alias_symbol = alias_sequence ? alias_sequence[structural_child_index] : 0; ts_tree__print_dot_graph(child, byte_offset, language, alias_symbol, f); structural_child_index++; } fprintf(f, "tree_%p -> tree_%p [tooltip=%u]\n", self, child, i); byte_offset += ts_tree_total_bytes(child); } } void ts_tree_print_dot_graph(const Tree *self, const TSLanguage *language, FILE *f) { fprintf(f, "digraph tree {\n"); fprintf(f, "edge [arrowhead=none]\n"); ts_tree__print_dot_graph(self, 0, language, 0, f); fprintf(f, "}\n"); } static const TSExternalTokenState empty_state = {.length = 0, .short_data = {0}}; bool ts_tree_external_token_state_eq(const Tree *self, const Tree *other) { const TSExternalTokenState *state1 = &empty_state; const TSExternalTokenState *state2 = &empty_state; if (self && self->has_external_tokens) state1 = &self->external_token_state; if (other && other->has_external_tokens) state2 = &other->external_token_state; return ts_external_token_state_eq(state1, state2); }