tree-sitter/test/runtime/stack_test.cc

612 lines
22 KiB
C++

#include "test_helper.h"
#include "helpers/tree_helpers.h"
#include "helpers/point_helpers.h"
#include "helpers/record_alloc.h"
#include "helpers/stream_methods.h"
#include "runtime/stack.h"
#include "runtime/subtree.h"
#include "runtime/length.h"
#include "runtime/alloc.h"
enum {
stateA = 2,
stateB,
stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
};
enum {
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
symbol9, symbol10
};
void free_slice_array(SubtreePool *pool, StackSliceArray *slices) {
for (size_t i = 0; i < slices->size; i++) {
StackSlice slice = slices->contents[i];
bool matches_prior_trees = false;
for (size_t j = 0; j < i; j++) {
StackSlice prior_slice = slices->contents[j];
if (slice.subtrees.contents == prior_slice.subtrees.contents) {
matches_prior_trees = true;
break;
}
}
if (!matches_prior_trees) {
for (size_t j = 0; j < slice.subtrees.size; j++)
ts_subtree_release(pool, slice.subtrees.contents[j]);
array_delete(&slice.subtrees);
}
}
}
SubtreeHeapData *mutate(Subtree subtree) {
return ts_subtree_to_mut_unsafe(subtree).ptr;
}
struct StackEntry {
TSStateId state;
size_t depth;
};
vector<StackEntry> get_stack_entries(Stack *stack, StackVersion version) {
vector<StackEntry> result;
ts_stack_iterate(
stack,
version,
[](void *payload, TSStateId state, uint32_t subtree_count) {
auto entries = static_cast<vector<StackEntry> *>(payload);
StackEntry entry = {state, subtree_count};
if (find(entries->begin(), entries->end(), entry) == entries->end()) {
entries->push_back(entry);
}
}, &result);
return result;
}
START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t subtree_count = 11;
Subtree subtrees[subtree_count];
Length tree_len = {3, {0, 3}};
SubtreePool pool;
before_each([&]() {
record_alloc::start();
pool = ts_subtree_pool_new(10);
stack = ts_stack_new(&pool);
TSLanguage dummy_language;
TSSymbolMetadata symbol_metadata[50] = {};
dummy_language.symbol_metadata = symbol_metadata;
for (size_t i = 0; i < subtree_count; i++) {
subtrees[i] = ts_subtree_new_leaf(
&pool, i + 1, length_zero(), tree_len, 0,
TS_TREE_STATE_NONE, true, false, &dummy_language
);
ts_external_scanner_state_init(&mutate(subtrees[i])->external_scanner_state, nullptr, 0);
}
});
after_each([&]() {
ts_stack_delete(stack);
for (size_t i = 0; i < subtree_count; i++) {
ts_subtree_release(&pool, subtrees[i]);
}
ts_subtree_pool_delete(&pool);
record_alloc::stop();
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
});
auto push = [&](StackVersion version, Subtree tree, TSStateId state) {
ts_subtree_retain(tree);
ts_stack_push(stack, version, tree, false, state);
};
describe("push(version, tree, is_pending, state)", [&]() {
it("adds entries to the given version of the stack", [&]() {
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(ts_stack_state(stack, 0), Equals(1));
AssertThat(ts_stack_position(stack, 0), Equals(length_zero()));
// . <──0── A*
push(0, subtrees[0], stateA);
AssertThat(ts_stack_state(stack, 0), Equals(stateA));
AssertThat(ts_stack_position(stack, 0), Equals(tree_len));
// . <──0── A <──1── B*
push(0, subtrees[1], stateB);
AssertThat(ts_stack_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_position(stack, 0), Equals(tree_len * 2));
// . <──0── A <──1── B <──2── C*
push(0, subtrees[2], stateC);
AssertThat(ts_stack_state(stack, 0), Equals(stateC));
AssertThat(ts_stack_position(stack, 0), Equals(tree_len * 3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{1, 3},
})));
});
});
describe("merge()", [&]() {
before_each([&]() {
// . <──0── A <─*
// ↑
// └───*
push(0, subtrees[0], stateA);
ts_stack_copy_version(stack, 0);
});
it("combines versions that have the same top states and positions", [&]() {
// . <──0── A <──1── B <──3── D*
// ↑
// └───2─── C <──4── D*
push(0, subtrees[1], stateB);
push(1, subtrees[2], stateC);
push(0, subtrees[3], stateD);
push(1, subtrees[4], stateD);
// . <──0── A <──1── B <──3── D*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateB, 1},
{stateC, 1},
{stateA, 2},
{1, 3},
})));
});
it("does not combine versions that have different states", [&]() {
// . <──0── A <──1── B*
// ↑
// └───2─── C*
push(0, subtrees[1], stateB);
push(1, subtrees[2], stateC);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
it("does not combine versions that have different positions", [&]() {
// . <──0── A <──1── B <────3──── D*
// ↑
// └───2─── C <──4── D*
mutate(subtrees[3])->size = tree_len * 3;
push(0, subtrees[1], stateB);
push(1, subtrees[2], stateC);
push(0, subtrees[3], stateD);
push(1, subtrees[4], stateD);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
describe("when the merged versions have more than one common entry", [&]() {
it("combines all of the top common entries", [&]() {
// . <──0── A <──1── B <──3── D <──5── E*
// ↑
// └───2─── C <──4── D <──5── E*
push(0, subtrees[1], stateB);
push(1, subtrees[2], stateC);
push(0, subtrees[3], stateD);
push(1, subtrees[4], stateD);
push(0, subtrees[5], stateE);
push(1, subtrees[5], stateE);
// . <──0── A <──1── B <──3── D <──5── E*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateE, 0},
{stateD, 1},
{stateB, 2},
{stateC, 2},
{stateA, 3},
{1, 4},
})));
});
});
describe("when one of the versions contains an extra (e.g. ERROR) tree of size zero", [&]() {
it("does not create a loop in the stack", [&]() {
// . <──0── A <────1──── B*
// ↑
// └2─ A <──1── B*
mutate(subtrees[2])->extra = true;
mutate(subtrees[2])->size = tree_len * 0;
push(0, subtrees[1], stateB);
push(1, subtrees[2], stateA);
push(1, subtrees[1], stateB);
// . <──0── A <──1── B*
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
});
});
});
describe("pop_count(version, count)", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
push(0, subtrees[0], stateA);
push(0, subtrees[1], stateB);
push(0, subtrees[2], stateC);
});
it("creates a new version with the given number of entries removed", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackSliceArray pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
StackSlice slice = pop.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.subtrees, Equals(vector<Subtree>({ subtrees[1], subtrees[2] })));
AssertThat(ts_stack_state(stack, 1), Equals(stateA));
free_slice_array(&pool,&pop);
});
it("does not count 'extra' subtrees toward the given count", [&]() {
mutate(subtrees[1])->extra = true;
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackSliceArray pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.size, Equals<size_t>(1));
StackSlice slice = pop.contents[0];
AssertThat(slice.subtrees, Equals(vector<Subtree>({ subtrees[0], subtrees[1], subtrees[2] })));
AssertThat(ts_stack_state(stack, 1), Equals(1));
free_slice_array(&pool,&pop);
});
describe("when the version has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// └───4─── E <──5── F <──6───┘
push(0, subtrees[3], stateD);
StackSliceArray pop = ts_stack_pop_count(stack, 0, 3);
free_slice_array(&pool,&pop);
push(1, subtrees[4], stateE);
push(1, subtrees[5], stateF);
push(1, subtrees[6], stateD);
ts_stack_merge(stack, 0, 1);
push(0, subtrees[10], stateI);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
});
describe("when there are two paths that reveal different versions", [&]() {
it("returns an entry for each revealed version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// └───4─── E*
StackSliceArray pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.size, Equals<size_t>(2));
StackSlice slice1 = pop.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.subtrees, Equals(vector<Subtree>({ subtrees[2], subtrees[3], subtrees[10] })));
StackSlice slice2 = pop.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.subtrees, Equals(vector<Subtree>({ subtrees[5], subtrees[6], subtrees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
AssertThat(get_stack_entries(stack, 2), Equals(vector<StackEntry>({
{stateE, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pool,&pop);
});
});
describe("when there is one path that ends at a merged version", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// | |
// └───5─── F <──6── G <──7───┘
// |
// └*
StackSliceArray pop = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop.size, Equals<size_t>(1));
StackSlice slice1 = pop.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.subtrees, Equals(vector<Subtree>({ subtrees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_state(stack, 1), Equals(stateD));
free_slice_array(&pool,&pop);
});
});
describe("when there are two paths that converge on one version", [&]() {
it("returns two slices with the same version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// |
// └*
StackSliceArray pop = ts_stack_pop_count(stack, 0, 4);
AssertThat(pop.size, Equals<size_t>(2));
StackSlice slice1 = pop.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.subtrees, Equals(vector<Subtree>({ subtrees[1], subtrees[2], subtrees[3], subtrees[10] })));
StackSlice slice2 = pop.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(1));
AssertThat(slice2.subtrees, Equals(vector<Subtree>({ subtrees[4], subtrees[5], subtrees[6], subtrees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_state(stack, 1), Equals(stateA));
free_slice_array(&pool,&pop);
});
});
describe("when there are three paths that lead to three different versions", [&]() {
it("returns three entries with different arrays of subtrees", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// | |
// └───7─── G <──8── H <──9───┘
StackSliceArray pop = ts_stack_pop_count(stack, 0, 4);
free_slice_array(&pool,&pop);
push(1, subtrees[7], stateG);
push(1, subtrees[8], stateH);
push(1, subtrees[9], stateD);
push(1, subtrees[10], stateI);
ts_stack_merge(stack, 0, 1);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{1, 5},
})));
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.size, Equals<size_t>(3));
StackSlice slice1 = pop.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.subtrees, Equals(vector<Subtree>({ subtrees[3], subtrees[10] })));
StackSlice slice2 = pop.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.subtrees, Equals(vector<Subtree>({ subtrees[6], subtrees[10] })));
StackSlice slice3 = pop.contents[2];
AssertThat(slice3.version, Equals<StackVersion>(3));
AssertThat(slice3.subtrees, Equals(vector<Subtree>({ subtrees[9], subtrees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(4));
AssertThat(ts_stack_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_state(stack, 1), Equals(stateC));
AssertThat(ts_stack_state(stack, 2), Equals(stateF));
AssertThat(ts_stack_state(stack, 3), Equals(stateH));
free_slice_array(&pool,&pop);
});
});
});
});
describe("pop_pending(version)", [&]() {
before_each([&]() {
push(0, subtrees[0], stateA);
});
it("removes the top node from the stack if it was pushed in pending mode", [&]() {
ts_stack_push(stack, 0, subtrees[1], true, stateB);
ts_subtree_retain(subtrees[1]);
StackSliceArray pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pool,&pop);
});
it("skips entries whose subtrees are extra", [&]() {
ts_stack_push(stack, 0, subtrees[1], true, stateB);
ts_subtree_retain(subtrees[1]);
mutate(subtrees[2])->extra = true;
mutate(subtrees[3])->extra = true;
push(0, subtrees[2], stateB);
push(0, subtrees[3], stateB);
StackSliceArray pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(pop.contents[0].subtrees, Equals(vector<Subtree>({ subtrees[1], subtrees[2], subtrees[3] })));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pool,&pop);
});
it("does nothing if the top node was not pushed in pending mode", [&]() {
push(0, subtrees[1], stateB);
StackSliceArray pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.size, Equals<size_t>(0));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pool,&pop);
});
});
describe("setting external token state", [&]() {
before_each([&]() {
mutate(subtrees[1])->has_external_tokens = true;
mutate(subtrees[2])->has_external_tokens = true;
ts_external_scanner_state_init(&mutate(subtrees[1])->external_scanner_state, NULL, 0);
ts_external_scanner_state_init(&mutate(subtrees[2])->external_scanner_state, NULL, 0);
});
it("allows the state to be retrieved", [&]() {
AssertThat(ts_stack_last_external_token(stack, 0).ptr, Equals<const SubtreeHeapData *>(nullptr));
ts_stack_set_last_external_token(stack, 0, subtrees[1]);
AssertThat(ts_stack_last_external_token(stack, 0).ptr, Equals<const SubtreeHeapData *>(subtrees[1].ptr));
ts_stack_copy_version(stack, 0);
AssertThat(ts_stack_last_external_token(stack, 1).ptr, Equals<const SubtreeHeapData *>(subtrees[1].ptr));
ts_stack_set_last_external_token(stack, 0, subtrees[2]);
AssertThat(ts_stack_last_external_token(stack, 0).ptr, Equals<const SubtreeHeapData *>(subtrees[2].ptr));
});
it("does not merge stack versions with different external token states", [&]() {
ts_external_scanner_state_init(&mutate(subtrees[1])->external_scanner_state, "abcd", 2);
ts_external_scanner_state_init(&mutate(subtrees[2])->external_scanner_state, "ABCD", 2);
ts_stack_copy_version(stack, 0);
push(0, subtrees[0], 5);
push(1, subtrees[0], 5);
ts_stack_set_last_external_token(stack, 0, subtrees[1]);
ts_stack_set_last_external_token(stack, 1, subtrees[2]);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
});
it("merges stack versions with identical external token states", [&]() {
ts_external_scanner_state_init(&mutate(subtrees[1])->external_scanner_state, "abcd", 2);
ts_external_scanner_state_init(&mutate(subtrees[2])->external_scanner_state, "abcd", 2);
ts_stack_copy_version(stack, 0);
push(0, subtrees[0], 5);
push(1, subtrees[0], 5);
ts_stack_set_last_external_token(stack, 0, subtrees[1]);
ts_stack_set_last_external_token(stack, 1, subtrees[2]);
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
});
it("does not distinguish between an *empty* external token state and *no* external token state", [&]() {
ts_stack_copy_version(stack, 0);
push(0, subtrees[0], 5);
push(1, subtrees[0], 5);
ts_stack_set_last_external_token(stack, 0, subtrees[1]);
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
});
});
});
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && left.depth == right.depth;
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.depth << "}";
}
std::ostream &operator<<(std::ostream &stream, const SubtreeArray &array) {
stream << "[";
bool first = true;
for (size_t i = 0; i < array.size; i++) {
if (!first)
stream << ", ";
first = false;
stream << array.contents[i];
}
return stream << "]";
}