- One has to think about lifetimes if a type has one:
- `<&'a Node<'tree>>::language` now returns `LanguageRef<'tree>` instead of
`LanguageRef<'a>`, as it should;
- Remove explicit "outlives" requirements from `QueryMatches`, `QueryCaptures`,
and their impl blocks, because they're inferred
- Removed unnecessary `&mut` from `cst_render_node`'s `cursor` parameter
|
||
|---|---|---|
| .. | ||
| bindings.rs | ||
| build.rs | ||
| ffi.rs | ||
| lib.rs | ||
| README.md | ||
| util.rs | ||
| wasm_language.rs | ||
Rust Tree-sitter
Rust bindings to the Tree-sitter parsing library.
Basic Usage
First, create a parser:
use tree_sitter::{InputEdit, Language, Parser, Point};
let mut parser = Parser::new();
Then, add a language as a dependency:
[dependencies]
tree-sitter = "0.24"
tree-sitter-rust = "0.23"
To use a language, you assign them to the parser.
parser.set_language(&tree_sitter_rust::LANGUAGE.into()).expect("Error loading Rust grammar");
Now you can parse source code:
let source_code = "fn test() {}";
let mut tree = parser.parse(source_code, None).unwrap();
let root_node = tree.root_node();
assert_eq!(root_node.kind(), "source_file");
assert_eq!(root_node.start_position().column, 0);
assert_eq!(root_node.end_position().column, 12);
Editing
Once you have a syntax tree, you can update it when your source code changes.
Passing in the previous edited tree makes parse run much more quickly:
let new_source_code = "fn test(a: u32) {}";
tree.edit(&InputEdit {
start_byte: 8,
old_end_byte: 8,
new_end_byte: 14,
start_position: Point::new(0, 8),
old_end_position: Point::new(0, 8),
new_end_position: Point::new(0, 14),
});
let new_tree = parser.parse(new_source_code, Some(&tree));
Text Input
The source code to parse can be provided either as a string, a slice, a vector, or as a function that returns a slice. The text can be encoded as either UTF8 or UTF16:
// Store some source code in an array of lines.
let lines = &[
"pub fn foo() {",
" 1",
"}",
];
// Parse the source code using a custom callback. The callback is called
// with both a byte offset and a row/column offset.
let tree = parser.parse_with(&mut |_byte: usize, position: Point| -> &[u8] {
let row = position.row as usize;
let column = position.column as usize;
if row < lines.len() {
if column < lines[row].as_bytes().len() {
&lines[row].as_bytes()[column..]
} else {
b"\n"
}
} else {
&[]
}
}, None).unwrap();
assert_eq!(
tree.root_node().to_sexp(),
"(source_file (function_item (visibility_modifier) (identifier) (parameters) (block (number_literal))))"
);
Using Wasm Grammar Files
Requires the feature wasm to be enabled.
First, create a parser with a Wasm store:
use tree_sitter::{wasmtime::Engine, Parser, WasmStore};
let engine = Engine::default();
let store = WasmStore::new(&engine).unwrap();
let mut parser = Parser::new();
parser.set_wasm_store(store).unwrap();
Then, load the language from a Wasm file:
const JAVASCRIPT_GRAMMAR: &[u8] = include_bytes!("path/to/tree-sitter-javascript.wasm");
let mut store = WasmStore::new(&engine).unwrap();
let javascript = store
.load_language("javascript", JAVASCRIPT_GRAMMAR)
.unwrap();
// The language may be loaded from a different WasmStore than the one set on
// the parser but it must use the same underlying WasmEngine.
parser.set_language(&javascript).unwrap();
Now you can parse source code:
let source_code = "let x = 1;";
let tree = parser.parse(source_code, None).unwrap();
assert_eq!(
tree.root_node().to_sexp(),
"(program (lexical_declaration (variable_declarator name: (identifier) value: (number))))"
);
Features
- std - This feature is enabled by default and allows
tree-sitterto use the standard library.- Error types implement the
std::error:Errortrait. regexperformance optimizations are enabled.- The DOT graph methods are enabled.
- Error types implement the
- wasm - This feature allows
tree-sitterto be built for Wasm targets using thewasmtime-c-apicrate.