tree-sitter/spec/runtime/tree_spec.cc
2015-09-18 22:02:06 -07:00

362 lines
11 KiB
C++

#include "runtime/runtime_spec_helper.h"
#include "runtime/helpers/tree_helpers.h"
#include "runtime/tree.h"
#include "runtime/length.h"
START_TEST
enum {
cat = ts_builtin_sym_start,
dog,
eel,
fox,
goat,
hog,
};
static const char *names[] = {
"ERROR",
"END",
"cat",
"dog",
"eel",
"fox",
"goat",
"hog",
};
describe("Tree", []() {
TSTree *tree1, *tree2, *parent1;
before_each([&]() {
tree1 = ts_tree_make_leaf(cat, {2, 1}, {5, 4}, TSNodeTypeNamed);
tree2 = ts_tree_make_leaf(cat, {1, 1}, {3, 3}, TSNodeTypeNamed);
parent1 = ts_tree_make_node(dog, 2, tree_array({
tree1,
tree2,
}), TSNodeTypeNamed);
});
after_each([&]() {
ts_tree_release(tree1);
ts_tree_release(tree2);
ts_tree_release(parent1);
});
describe("make_leaf(sym, size, padding, is_hidden)", [&]() {
it("does not record that it is fragile", [&]() {
AssertThat(ts_tree_is_fragile_left(tree1), IsFalse());
AssertThat(ts_tree_is_fragile_right(tree1), IsFalse());
});
});
describe("make_error(size, padding, lookahead_char)", [&]() {
it("records that it is fragile", [&]() {
TSTree *error_tree = ts_tree_make_error(
ts_length_zero(),
ts_length_zero(),
'z');
AssertThat(ts_tree_is_fragile_left(error_tree), IsTrue());
AssertThat(ts_tree_is_fragile_right(error_tree), IsTrue());
});
});
describe("make_node(symbol, child_count, children, is_hidden)", [&]() {
it("computes its size based on its child nodes", [&]() {
AssertThat(parent1->size.bytes, Equals<size_t>(
tree1->size.bytes + + tree2->padding.bytes + tree2->size.bytes));
AssertThat(parent1->size.chars, Equals<size_t>(
tree1->size.chars + + tree2->padding.chars + tree2->size.chars));
});
it("computes its padding based on its first child", [&]() {
AssertThat(parent1->padding.bytes, Equals<size_t>(tree1->padding.bytes));
AssertThat(parent1->padding.chars, Equals<size_t>(tree1->padding.chars));
});
describe("when the first node is fragile on the left side", [&]() {
TSTree *parent;
before_each([&]() {
ts_tree_set_fragile_left(tree1);
ts_tree_set_extra(tree1);
parent = ts_tree_make_node(eel, 2, tree_array({
tree1,
tree2,
}), TSNodeTypeNamed);
});
after_each([&]() {
ts_tree_release(parent);
});
it("records that it is fragile on the left side", [&]() {
AssertThat(ts_tree_is_fragile_left(parent), IsTrue());
});
});
describe("when the last node is fragile on the right side", [&]() {
TSTree *parent;
before_each([&]() {
ts_tree_set_fragile_right(tree2);
ts_tree_set_extra(tree2);
parent = ts_tree_make_node(eel, 2, tree_array({
tree1,
tree2,
}), TSNodeTypeNamed);
});
after_each([&]() {
ts_tree_release(parent);
});
it("records that it is fragile on the right side", [&]() {
AssertThat(ts_tree_is_fragile_right(parent), IsTrue());
});
});
describe("when the outer nodes aren't fragile on their outer side", [&]() {
TSTree *parent;
before_each([&]() {
ts_tree_set_fragile_right(tree1);
ts_tree_set_fragile_left(tree2);
parent = ts_tree_make_node(eel, 2, tree_array({
tree1,
tree2,
}), TSNodeTypeNamed);
});
after_each([&]() {
ts_tree_release(parent);
});
it("records that it is not fragile", [&]() {
AssertThat(ts_tree_is_fragile_left(parent), IsFalse());
AssertThat(ts_tree_is_fragile_right(parent), IsFalse());
});
});
});
describe("edit(InputEdit)", [&]() {
TSTree *tree = nullptr;
before_each([&]() {
tree = ts_tree_make_node(cat, 3, tree_array({
ts_tree_make_leaf(dog, {2, 2}, {3, 3}, TSNodeTypeNamed),
ts_tree_make_leaf(eel, {2, 2}, {3, 3}, TSNodeTypeNamed),
ts_tree_make_leaf(fox, {2, 2}, {3, 3}, TSNodeTypeNamed),
}), TSNodeTypeNamed);
AssertThat(tree->padding, Equals<TSLength>({2, 2}));
AssertThat(tree->size, Equals<TSLength>({13, 13}));
});
after_each([&]() {
ts_tree_release(tree);
});
auto assert_consistent = [&](const TSTree *tree) {
AssertThat(tree->children[0]->padding, Equals<TSLength>(tree->padding));
TSLength total_children_size = ts_length_zero();
for (size_t i = 0; i < tree->child_count; i++)
total_children_size = ts_length_add(total_children_size, ts_tree_total_size(tree->children[i]));
AssertThat(total_children_size, Equals<TSLength>(ts_tree_total_size(tree)));
};
describe("edits within a tree's padding", [&]() {
it("resizes the padding of the tree and its leftmost descendants", [&]() {
ts_tree_edit(tree, {1, 1, 0});
assert_consistent(tree);
AssertThat(tree->options.has_changes, IsTrue());
AssertThat(tree->padding, Equals<TSLength>({0, 3}));
AssertThat(tree->size, Equals<TSLength>({13, 13}));
AssertThat(tree->children[0]->options.has_changes, IsTrue());
AssertThat(tree->children[0]->padding, Equals<TSLength>({0, 3}));
AssertThat(tree->children[0]->size, Equals<TSLength>({3, 3}));
AssertThat(tree->children[1]->options.has_changes, IsFalse());
AssertThat(tree->children[1]->padding, Equals<TSLength>({2, 2}));
AssertThat(tree->children[1]->size, Equals<TSLength>({3, 3}));
});
});
describe("edits that start in a tree's padding but extend into its content", [&]() {
it("shrinks the content to compensate for the expanded padding", [&]() {
ts_tree_edit(tree, {1, 4, 3});
assert_consistent(tree);
AssertThat(tree->options.has_changes, IsTrue());
AssertThat(tree->padding, Equals<TSLength>({0, 5}));
AssertThat(tree->size, Equals<TSLength>({0, 11}));
AssertThat(tree->children[0]->options.has_changes, IsTrue());
AssertThat(tree->children[0]->padding, Equals<TSLength>({0, 5}));
AssertThat(tree->children[0]->size, Equals<TSLength>({0, 1}));
});
});
describe("insertions at the edge of a tree's padding", [&]() {
it("expands the tree's padding", [&]() {
ts_tree_edit(tree, {2, 2, 0});
assert_consistent(tree);
AssertThat(tree->options.has_changes, IsTrue());
AssertThat(tree->padding, Equals<TSLength>({0, 4}));
AssertThat(tree->size, Equals<TSLength>({13, 13}));
AssertThat(tree->children[0]->options.has_changes, IsTrue());
AssertThat(tree->children[0]->padding, Equals<TSLength>({0, 4}));
AssertThat(tree->children[0]->size, Equals<TSLength>({3, 3}));
AssertThat(tree->children[1]->options.has_changes, IsFalse());
});
});
describe("replacements starting at the edge of a tree's padding", [&]() {
it("resizes the content and not the padding", [&]() {
ts_tree_edit(tree, {2, 5, 2});
assert_consistent(tree);
AssertThat(tree->options.has_changes, IsTrue());
AssertThat(tree->padding, Equals<TSLength>({2, 2}));
AssertThat(tree->size, Equals<TSLength>({0, 16}));
AssertThat(tree->children[0]->options.has_changes, IsTrue());
AssertThat(tree->children[0]->padding, Equals<TSLength>({2, 2}));
AssertThat(tree->children[0]->size, Equals<TSLength>({0, 6}));
AssertThat(tree->children[1]->options.has_changes, IsFalse());
});
});
describe("deletions that span more than one child node", [&]() {
it("shrinks subsequent child nodes", [&]() {
ts_tree_edit(tree, {1, 3, 10});
assert_consistent(tree);
AssertThat(tree->options.has_changes, IsTrue());
AssertThat(tree->padding, Equals<TSLength>({0, 4}));
AssertThat(tree->size, Equals<TSLength>({0, 4}));
AssertThat(tree->children[0]->options.has_changes, IsTrue());
AssertThat(tree->children[0]->padding, Equals<TSLength>({0, 4}));
AssertThat(tree->children[0]->size, Equals<TSLength>({0, 0}));
AssertThat(tree->children[1]->options.has_changes, IsTrue());
AssertThat(tree->children[1]->padding, Equals<TSLength>({0, 0}));
AssertThat(tree->children[1]->size, Equals<TSLength>({0, 0}));
AssertThat(tree->children[2]->options.has_changes, IsTrue());
AssertThat(tree->children[2]->padding, Equals<TSLength>({0, 1}));
AssertThat(tree->children[2]->size, Equals<TSLength>({3, 3}));
});
});
});
describe("equality", [&]() {
it("returns true for identical trees", [&]() {
TSTree *tree1_copy = ts_tree_make_leaf(cat, {2, 1}, {5, 4}, TSNodeTypeNamed);
AssertThat(ts_tree_eq(tree1, tree1_copy), IsTrue());
TSTree *tree2_copy = ts_tree_make_leaf(cat, {1, 1}, {3, 3}, TSNodeTypeNamed);
AssertThat(ts_tree_eq(tree2, tree2_copy), IsTrue());
TSTree *parent2 = ts_tree_make_node(dog, 2, tree_array({
tree1_copy,
tree2_copy,
}), TSNodeTypeNamed);
AssertThat(ts_tree_eq(parent1, parent2), IsTrue());
ts_tree_release(tree1_copy);
ts_tree_release(tree2_copy);
ts_tree_release(parent2);
});
it("returns false for trees with different symbols", [&]() {
TSTree *different_tree = ts_tree_make_leaf(
tree1->symbol + 1,
tree1->padding,
tree1->size,
TSNodeTypeNamed);
AssertThat(ts_tree_eq(tree1, different_tree), IsFalse());
ts_tree_release(different_tree);
});
it("returns false for trees with different children", [&]() {
TSTree *different_tree = ts_tree_make_leaf(
tree1->symbol + 1,
tree1->padding,
tree1->size,
TSNodeTypeNamed);
TSTree *different_parent = ts_tree_make_node(dog, 2, tree_array({
different_tree, different_tree,
}), TSNodeTypeNamed);
AssertThat(ts_tree_eq(different_parent, parent1), IsFalse());
AssertThat(ts_tree_eq(parent1, different_parent), IsFalse());
ts_tree_release(different_tree);
ts_tree_release(different_parent);
});
});
describe("serialization", [&]() {
it("returns a readable string", [&]() {
char *string1 = ts_tree_string(tree1, names);
AssertThat(string(string1), Equals("(cat)"));
free(string1);
char *string2 = ts_tree_string(parent1, names);
AssertThat(string(string2), Equals("(dog (cat) (cat))"));
free(string2);
});
it("hides invisible nodes", [&]() {
tree2->options.type = TSNodeTypeHidden;
char *string1 = ts_tree_string(parent1, names);
AssertThat(string(string1), Equals("(dog (cat))"));
free(string1);
});
describe("when the root node is not visible", [&]() {
it("still serializes it", [&]() {
parent1->options.type = TSNodeTypeHidden;
char *string1 = ts_tree_string(parent1, names);
AssertThat(string(string1), Equals("(dog (cat) (cat))"));
free(string1);
tree1->options.type = TSNodeTypeHidden;
char *string2 = ts_tree_string(tree1, names);
AssertThat(string(string2), Equals("(cat)"));
free(string2);
});
});
});
});
END_TEST
ostream &operator<<(ostream &stream, const TSLength &length) {
return stream << "{bytes:" << length.bytes << ", chars:" << length.chars << "}";
}
bool operator==(TSLength left, TSLength right) {
return ts_length_eq(left, right);
}