tree-sitter/cli/src/generate/build_tables/build_parse_table.rs
2019-10-21 17:26:01 -07:00

892 lines
34 KiB
Rust

use super::item::{ParseItem, ParseItemSet, ParseItemSetCore};
use super::item_set_builder::ParseItemSetBuilder;
use crate::error::{Error, Result};
use crate::generate::grammars::{
InlinedProductionMap, LexicalGrammar, SyntaxGrammar, VariableType,
};
use crate::generate::node_types::VariableInfo;
use crate::generate::rules::{Associativity, Symbol, SymbolType, TokenSet};
use crate::generate::tables::{
FieldLocation, GotoAction, ParseAction, ParseState, ParseStateId, ParseTable, ParseTableEntry,
ProductionInfo, ProductionInfoId,
};
use core::ops::Range;
use std::collections::hash_map::Entry;
use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
use std::fmt::Write;
use std::u32;
// For conflict reporting, each parse state is associated with an example
// sequence of symbols that could lead to that parse state.
type SymbolSequence = Vec<Symbol>;
type AuxiliarySymbolSequence = Vec<AuxiliarySymbolInfo>;
pub(crate) type ParseStateInfo<'a> = (SymbolSequence, ParseItemSet<'a>);
#[derive(Clone)]
struct AuxiliarySymbolInfo {
auxiliary_symbol: Symbol,
parent_symbols: Vec<Symbol>,
}
struct ParseStateQueueEntry {
state_id: ParseStateId,
preceding_auxiliary_symbols: AuxiliarySymbolSequence,
}
struct ParseTableBuilder<'a> {
item_set_builder: ParseItemSetBuilder<'a>,
syntax_grammar: &'a SyntaxGrammar,
lexical_grammar: &'a LexicalGrammar,
variable_info: &'a Vec<VariableInfo>,
core_ids_by_core: HashMap<ParseItemSetCore<'a>, usize>,
state_ids_by_item_set: HashMap<ParseItemSet<'a>, ParseStateId>,
parse_state_info_by_id: Vec<ParseStateInfo<'a>>,
parse_state_queue: VecDeque<ParseStateQueueEntry>,
non_terminal_extra_states: Vec<(Symbol, usize)>,
parse_table: ParseTable,
}
impl<'a> ParseTableBuilder<'a> {
fn build(mut self) -> Result<(ParseTable, Vec<ParseStateInfo<'a>>)> {
// Ensure that the empty alias sequence has index 0.
self.parse_table
.production_infos
.push(ProductionInfo::default());
// Add the error state at index 0.
self.add_parse_state(&Vec::new(), &Vec::new(), ParseItemSet::default(), false);
// Add the starting state at index 1.
self.add_parse_state(
&Vec::new(),
&Vec::new(),
ParseItemSet::with(
[(
ParseItem::start(),
[Symbol::end()].iter().cloned().collect(),
)]
.iter()
.cloned(),
),
false,
);
// Compute the possible item sets for non-terminal extras.
let mut non_terminal_extra_item_sets_by_first_terminal = BTreeMap::new();
for extra_non_terminal in self
.syntax_grammar
.extra_symbols
.iter()
.filter(|s| s.is_non_terminal())
{
let variable = &self.syntax_grammar.variables[extra_non_terminal.index];
for production in &variable.productions {
non_terminal_extra_item_sets_by_first_terminal
.entry(production.first_symbol().unwrap())
.or_insert(ParseItemSet::default())
.insert(
ParseItem {
variable_index: extra_non_terminal.index as u32,
production,
step_index: 1,
},
&[Symbol::end()].iter().cloned().collect(),
);
}
}
// Add a state for each starting terminal of a non-terminal extra rule.
for (terminal, item_set) in non_terminal_extra_item_sets_by_first_terminal {
self.non_terminal_extra_states
.push((terminal, self.parse_table.states.len()));
self.add_parse_state(&Vec::new(), &Vec::new(), item_set, true);
}
while let Some(entry) = self.parse_state_queue.pop_front() {
let item_set = self
.item_set_builder
.transitive_closure(&self.parse_state_info_by_id[entry.state_id].1);
self.add_actions(
self.parse_state_info_by_id[entry.state_id].0.clone(),
entry.preceding_auxiliary_symbols,
entry.state_id,
item_set,
)?;
}
self.remove_precedences();
Ok((self.parse_table, self.parse_state_info_by_id))
}
fn add_parse_state(
&mut self,
preceding_symbols: &SymbolSequence,
preceding_auxiliary_symbols: &AuxiliarySymbolSequence,
item_set: ParseItemSet<'a>,
is_non_terminal_extra: bool,
) -> ParseStateId {
match self.state_ids_by_item_set.entry(item_set) {
// If an equivalent item set has already been processed, then return
// the existing parse state index.
Entry::Occupied(o) => *o.get(),
// Otherwise, insert a new parse state and add it to the queue of
// parse states to populate.
Entry::Vacant(v) => {
let core = v.key().core();
let core_count = self.core_ids_by_core.len();
let core_id = match self.core_ids_by_core.entry(core) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
e.insert(core_count);
core_count
}
};
let state_id = self.parse_table.states.len();
self.parse_state_info_by_id
.push((preceding_symbols.clone(), v.key().clone()));
self.parse_table.states.push(ParseState {
id: state_id,
lex_state_id: 0,
external_lex_state_id: 0,
terminal_entries: HashMap::new(),
nonterminal_entries: HashMap::new(),
core_id,
is_non_terminal_extra,
});
self.parse_state_queue.push_back(ParseStateQueueEntry {
state_id,
preceding_auxiliary_symbols: preceding_auxiliary_symbols.clone(),
});
v.insert(state_id);
state_id
}
}
}
fn add_actions(
&mut self,
mut preceding_symbols: SymbolSequence,
mut preceding_auxiliary_symbols: Vec<AuxiliarySymbolInfo>,
state_id: ParseStateId,
item_set: ParseItemSet<'a>,
) -> Result<()> {
let mut terminal_successors = BTreeMap::new();
let mut non_terminal_successors = BTreeMap::new();
let mut lookaheads_with_conflicts = TokenSet::new();
// Each item in the item set contributes to either or a Shift action or a Reduce
// action in this state.
for (item, lookaheads) in &item_set.entries {
// If the item is unfinished, then this state has a transition for the item's
// next symbol. Advance the item to its next step and insert the resulting
// item into the successor item set.
if let Some(next_symbol) = item.symbol() {
let successor = item.successor();
if next_symbol.is_non_terminal() {
// Keep track of where auxiliary non-terminals (repeat symbols) are
// used within visible symbols. This information may be needed later
// for conflict resolution.
if self.syntax_grammar.variables[next_symbol.index].is_auxiliary() {
preceding_auxiliary_symbols
.push(self.get_auxiliary_node_info(&item_set, next_symbol));
}
non_terminal_successors
.entry(next_symbol)
.or_insert_with(|| ParseItemSet::default())
.insert(successor, lookaheads);
} else {
terminal_successors
.entry(next_symbol)
.or_insert_with(|| ParseItemSet::default())
.insert(successor, lookaheads);
}
}
// If the item is finished, then add a Reduce action to this state based
// on this item.
else {
let action = if item.is_augmented() {
ParseAction::Accept
} else {
ParseAction::Reduce {
symbol: Symbol::non_terminal(item.variable_index as usize),
child_count: item.step_index as usize,
precedence: item.precedence(),
associativity: item.associativity(),
dynamic_precedence: item.production.dynamic_precedence,
production_id: self.get_production_id(item),
}
};
for lookahead in lookaheads.iter() {
let entry = self.parse_table.states[state_id]
.terminal_entries
.entry(lookahead);
let entry = entry.or_insert_with(|| ParseTableEntry::new());
// While inserting Reduce actions, eagerly resolve conflicts related
// to precedence: avoid inserting lower-precedence reductions, and
// clear the action list when inserting higher-precedence reductions.
if entry.actions.is_empty() {
entry.actions.push(action);
} else if action.precedence() > entry.actions[0].precedence() {
entry.actions.clear();
entry.actions.push(action);
lookaheads_with_conflicts.remove(&lookahead);
} else if action.precedence() == entry.actions[0].precedence() {
entry.actions.push(action);
lookaheads_with_conflicts.insert(lookahead);
}
}
}
}
// Having computed the the successor item sets for each symbol, add a new
// parse state for each of these item sets, and add a corresponding Shift
// action to this state.
for (symbol, next_item_set) in terminal_successors {
preceding_symbols.push(symbol);
let next_state_id = self.add_parse_state(
&preceding_symbols,
&preceding_auxiliary_symbols,
next_item_set,
self.parse_table.states[state_id].is_non_terminal_extra,
);
preceding_symbols.pop();
let entry = self.parse_table.states[state_id]
.terminal_entries
.entry(symbol);
if let Entry::Occupied(e) = &entry {
if !e.get().actions.is_empty() {
lookaheads_with_conflicts.insert(symbol);
}
}
entry
.or_insert_with(|| ParseTableEntry::new())
.actions
.push(ParseAction::Shift {
state: next_state_id,
is_repetition: false,
});
}
for (symbol, next_item_set) in non_terminal_successors {
preceding_symbols.push(symbol);
let next_state_id = self.add_parse_state(
&preceding_symbols,
&preceding_auxiliary_symbols,
next_item_set,
self.parse_table.states[state_id].is_non_terminal_extra,
);
preceding_symbols.pop();
self.parse_table.states[state_id]
.nonterminal_entries
.insert(symbol, GotoAction::Goto(next_state_id));
}
// For any symbol with multiple actions, perform conflict resolution.
// This will either
// * choose one action over the others using precedence or associativity
// * keep multiple actions if this conflict has been whitelisted in the grammar
// * fail, terminating the parser generation process
for symbol in lookaheads_with_conflicts.iter() {
self.handle_conflict(
&item_set,
state_id,
&preceding_symbols,
&preceding_auxiliary_symbols,
symbol,
)?;
}
// Finally, add actions for the grammar's `extra` symbols.
let state = &mut self.parse_table.states[state_id];
let is_non_terminal_extra = state.is_non_terminal_extra;
let is_end_of_non_terminal_extra =
is_non_terminal_extra && state.terminal_entries.len() == 1;
// Add actions for the start tokens of each non-terminal extra rule.
// These actions are added to every state except for the states that are
// alread within non-terminal extras. Non-terminal extras are not allowed
// to nest within each other.
if !is_non_terminal_extra {
for (terminal, state_id) in &self.non_terminal_extra_states {
state
.terminal_entries
.entry(*terminal)
.or_insert(ParseTableEntry {
reusable: true,
actions: vec![ParseAction::Shift {
state: *state_id,
is_repetition: false,
}],
});
}
}
// Add ShiftExtra actions for the terminal extra tokens. These actions
// are added to every state except for those at the ends of non-terminal
// extras.
if !is_end_of_non_terminal_extra {
for extra_token in &self.syntax_grammar.extra_symbols {
if extra_token.is_non_terminal() {
state
.nonterminal_entries
.insert(*extra_token, GotoAction::ShiftExtra);
} else {
state
.terminal_entries
.entry(*extra_token)
.or_insert(ParseTableEntry {
reusable: true,
actions: vec![ParseAction::ShiftExtra],
});
}
}
}
Ok(())
}
fn handle_conflict(
&mut self,
item_set: &ParseItemSet,
state_id: ParseStateId,
preceding_symbols: &SymbolSequence,
preceding_auxiliary_symbols: &Vec<AuxiliarySymbolInfo>,
conflicting_lookahead: Symbol,
) -> Result<()> {
let entry = self.parse_table.states[state_id]
.terminal_entries
.get_mut(&conflicting_lookahead)
.unwrap();
// Determine which items in the set conflict with each other, and the
// precedences associated with SHIFT vs REDUCE actions. There won't
// be multiple REDUCE actions with different precedences; that is
// sorted out ahead of time in `add_actions`. But there can still be
// REDUCE-REDUCE conflicts where all actions have the *same*
// precedence, and there can still be SHIFT/REDUCE conflicts.
let reduce_precedence = entry.actions[0].precedence();
let mut considered_associativity = false;
let mut shift_precedence: Option<Range<i32>> = None;
let mut conflicting_items = HashSet::new();
for (item, lookaheads) in &item_set.entries {
if let Some(step) = item.step() {
if item.step_index > 0 {
if self
.item_set_builder
.first_set(&step.symbol)
.contains(&conflicting_lookahead)
{
if item.variable_index != u32::MAX {
conflicting_items.insert(item);
}
let precedence = item.precedence();
if let Some(range) = &mut shift_precedence {
if precedence < range.start {
range.start = precedence;
} else if precedence > range.end {
range.end = precedence;
}
} else {
shift_precedence = Some(precedence..precedence);
}
}
}
} else if lookaheads.contains(&conflicting_lookahead) {
if item.variable_index != u32::MAX {
conflicting_items.insert(item);
}
}
}
if let ParseAction::Shift { is_repetition, .. } = entry.actions.last_mut().unwrap() {
let shift_precedence = shift_precedence.unwrap_or(0..0);
// If all of the items in the conflict have the same parent symbol,
// and that parent symbols is auxiliary, then this is just the intentional
// ambiguity associated with a repeat rule. Resolve that class of ambiguity
// by leaving it in the parse table, but marking the SHIFT action with
// an `is_repetition` flag.
let conflicting_variable_index =
conflicting_items.iter().next().unwrap().variable_index;
if self.syntax_grammar.variables[conflicting_variable_index as usize].is_auxiliary()
&& conflicting_items
.iter()
.all(|item| item.variable_index == conflicting_variable_index)
{
*is_repetition = true;
return Ok(());
}
// If the SHIFT action has higher precedence, remove all the REDUCE actions.
if shift_precedence.start > reduce_precedence
|| (shift_precedence.start == reduce_precedence
&& shift_precedence.end > reduce_precedence)
{
entry.actions.drain(0..entry.actions.len() - 1);
}
// If the REDUCE actions have higher precedence, remove the SHIFT action.
else if shift_precedence.end < reduce_precedence
|| (shift_precedence.end == reduce_precedence
&& shift_precedence.start < reduce_precedence)
{
entry.actions.pop();
conflicting_items.retain(|item| item.is_done());
}
// If the SHIFT and REDUCE actions have the same predence, consider
// the REDUCE actions' associativity.
else if shift_precedence == (reduce_precedence..reduce_precedence) {
considered_associativity = true;
let mut has_left = false;
let mut has_right = false;
let mut has_non = false;
for action in &entry.actions {
if let ParseAction::Reduce { associativity, .. } = action {
match associativity {
Some(Associativity::Left) => has_left = true,
Some(Associativity::Right) => has_right = true,
None => has_non = true,
}
}
}
// If all Reduce actions are left associative, remove the SHIFT action.
// If all Reduce actions are right associative, remove the REDUCE actions.
match (has_left, has_non, has_right) {
(true, false, false) => {
entry.actions.pop();
conflicting_items.retain(|item| item.is_done());
}
(false, false, true) => {
entry.actions.drain(0..entry.actions.len() - 1);
}
_ => {}
}
}
}
// If all of the actions but one have been eliminated, then there's no problem.
let entry = self.parse_table.states[state_id]
.terminal_entries
.get_mut(&conflicting_lookahead)
.unwrap();
if entry.actions.len() == 1 {
return Ok(());
}
// Determine the set of parent symbols involved in this conflict.
let mut actual_conflict = Vec::new();
for item in &conflicting_items {
let symbol = Symbol::non_terminal(item.variable_index as usize);
if self.syntax_grammar.variables[symbol.index].is_auxiliary() {
actual_conflict.extend(
preceding_auxiliary_symbols
.iter()
.rev()
.find_map(|info| {
if info.auxiliary_symbol == symbol {
Some(&info.parent_symbols)
} else {
None
}
})
.unwrap()
.iter(),
);
} else {
actual_conflict.push(symbol);
}
}
actual_conflict.sort_unstable();
actual_conflict.dedup();
// If this set of symbols has been whitelisted, then there's no error.
if self
.syntax_grammar
.expected_conflicts
.contains(&actual_conflict)
{
return Ok(());
}
let mut msg = "Unresolved conflict for symbol sequence:\n\n".to_string();
for symbol in preceding_symbols {
write!(&mut msg, " {}", self.symbol_name(symbol)).unwrap();
}
write!(
&mut msg,
" • {} …\n\n",
self.symbol_name(&conflicting_lookahead)
)
.unwrap();
write!(&mut msg, "Possible interpretations:\n\n").unwrap();
let mut interpretions = conflicting_items
.iter()
.map(|item| {
let mut line = String::new();
for preceding_symbol in preceding_symbols
.iter()
.take(preceding_symbols.len() - item.step_index as usize)
{
write!(&mut line, " {}", self.symbol_name(preceding_symbol)).unwrap();
}
write!(
&mut line,
" ({}",
&self.syntax_grammar.variables[item.variable_index as usize].name
)
.unwrap();
for (j, step) in item.production.steps.iter().enumerate() {
if j as u32 == item.step_index {
write!(&mut line, "").unwrap();
}
write!(&mut line, " {}", self.symbol_name(&step.symbol)).unwrap();
}
write!(&mut line, ")").unwrap();
if item.is_done() {
write!(
&mut line,
" • {} …",
self.symbol_name(&conflicting_lookahead)
)
.unwrap();
}
let precedence = item.precedence();
let associativity = item.associativity();
let prec_line = if let Some(associativity) = associativity {
Some(format!(
"(precedence: {}, associativity: {:?})",
precedence, associativity
))
} else if precedence > 0 {
Some(format!("(precedence: {})", precedence))
} else {
None
};
(line, prec_line)
})
.collect::<Vec<_>>();
let max_interpretation_length = interpretions
.iter()
.map(|i| i.0.chars().count())
.max()
.unwrap();
interpretions.sort_unstable();
for (i, (line, prec_suffix)) in interpretions.into_iter().enumerate() {
write!(&mut msg, " {}:", i + 1).unwrap();
msg += &line;
if let Some(prec_suffix) = prec_suffix {
for _ in line.chars().count()..max_interpretation_length {
msg.push(' ');
}
msg += " ";
msg += &prec_suffix;
}
msg.push('\n');
}
let mut resolution_count = 0;
write!(&mut msg, "\nPossible resolutions:\n\n").unwrap();
let mut shift_items = Vec::new();
let mut reduce_items = Vec::new();
for item in conflicting_items {
if item.is_done() {
reduce_items.push(item);
} else {
shift_items.push(item);
}
}
shift_items.sort_unstable();
reduce_items.sort_unstable();
if actual_conflict.len() > 1 {
if shift_items.len() > 0 {
resolution_count += 1;
write!(
&mut msg,
" {}: Specify a higher precedence in",
resolution_count
)
.unwrap();
for (i, item) in shift_items.iter().enumerate() {
if i > 0 {
write!(&mut msg, " and").unwrap();
}
write!(
&mut msg,
" `{}`",
self.symbol_name(&Symbol::non_terminal(item.variable_index as usize))
)
.unwrap();
}
write!(&mut msg, " than in the other rules.\n").unwrap();
}
for item in &reduce_items {
resolution_count += 1;
write!(
&mut msg,
" {}: Specify a higher precedence in `{}` than in the other rules.\n",
resolution_count,
self.symbol_name(&Symbol::non_terminal(item.variable_index as usize))
)
.unwrap();
}
}
if considered_associativity {
resolution_count += 1;
write!(
&mut msg,
" {}: Specify a left or right associativity in ",
resolution_count
)
.unwrap();
for (i, item) in reduce_items.iter().enumerate() {
if i > 0 {
write!(&mut msg, " and ").unwrap();
}
write!(
&mut msg,
"`{}`",
self.symbol_name(&Symbol::non_terminal(item.variable_index as usize))
)
.unwrap();
}
write!(&mut msg, "\n").unwrap();
}
resolution_count += 1;
write!(
&mut msg,
" {}: Add a conflict for these rules: ",
resolution_count
)
.unwrap();
for (i, symbol) in actual_conflict.iter().enumerate() {
if i > 0 {
write!(&mut msg, ", ").unwrap();
}
write!(&mut msg, "`{}`", self.symbol_name(symbol)).unwrap();
}
write!(&mut msg, "\n").unwrap();
Err(Error::new(msg))
}
fn get_auxiliary_node_info(
&self,
item_set: &ParseItemSet,
symbol: Symbol,
) -> AuxiliarySymbolInfo {
let parent_symbols = item_set
.entries
.iter()
.filter_map(|(item, _)| {
let variable_index = item.variable_index as usize;
if item.symbol() == Some(symbol)
&& !self.syntax_grammar.variables[variable_index].is_auxiliary()
{
Some(Symbol::non_terminal(variable_index))
} else {
None
}
})
.collect();
AuxiliarySymbolInfo {
auxiliary_symbol: symbol,
parent_symbols,
}
}
fn remove_precedences(&mut self) {
for state in self.parse_table.states.iter_mut() {
for (_, entry) in state.terminal_entries.iter_mut() {
for action in entry.actions.iter_mut() {
match action {
ParseAction::Reduce {
precedence,
associativity,
..
} => {
*precedence = 0;
*associativity = None;
}
_ => {}
}
}
}
}
}
fn get_production_id(&mut self, item: &ParseItem) -> ProductionInfoId {
let mut production_info = ProductionInfo {
alias_sequence: Vec::new(),
field_map: BTreeMap::new(),
};
for (i, step) in item.production.steps.iter().enumerate() {
production_info.alias_sequence.push(step.alias.clone());
if let Some(field_name) = &step.field_name {
production_info
.field_map
.entry(field_name.clone())
.or_insert(Vec::new())
.push(FieldLocation {
index: i,
inherited: false,
});
}
if step.symbol.kind == SymbolType::NonTerminal
&& !self.syntax_grammar.variables[step.symbol.index]
.kind
.is_visible()
{
let info = &self.variable_info[step.symbol.index];
for (field_name, _) in &info.fields {
production_info
.field_map
.entry(field_name.clone())
.or_insert(Vec::new())
.push(FieldLocation {
index: i,
inherited: true,
});
}
}
}
while production_info.alias_sequence.last() == Some(&None) {
production_info.alias_sequence.pop();
}
if item.production.steps.len() > self.parse_table.max_aliased_production_length {
self.parse_table.max_aliased_production_length = item.production.steps.len()
}
if let Some(index) = self
.parse_table
.production_infos
.iter()
.position(|seq| *seq == production_info)
{
index
} else {
self.parse_table.production_infos.push(production_info);
self.parse_table.production_infos.len() - 1
}
}
fn symbol_name(&self, symbol: &Symbol) -> String {
match symbol.kind {
SymbolType::End => "EOF".to_string(),
SymbolType::External => self.syntax_grammar.external_tokens[symbol.index]
.name
.clone(),
SymbolType::NonTerminal => self.syntax_grammar.variables[symbol.index].name.clone(),
SymbolType::Terminal => {
let variable = &self.lexical_grammar.variables[symbol.index];
if variable.kind == VariableType::Named {
variable.name.clone()
} else {
format!("'{}'", &variable.name)
}
}
}
}
}
fn populate_following_tokens(
result: &mut Vec<TokenSet>,
grammar: &SyntaxGrammar,
inlines: &InlinedProductionMap,
builder: &ParseItemSetBuilder,
) {
let productions = grammar
.variables
.iter()
.flat_map(|v| &v.productions)
.chain(&inlines.productions);
let all_tokens = (0..result.len())
.into_iter()
.map(Symbol::terminal)
.collect::<TokenSet>();
for production in productions {
for i in 1..production.steps.len() {
let left_tokens = builder.last_set(&production.steps[i - 1].symbol);
let right_tokens = builder.first_set(&production.steps[i].symbol);
for left_token in left_tokens.iter() {
if left_token.is_terminal() {
result[left_token.index].insert_all_terminals(right_tokens);
}
}
}
}
for extra in &grammar.extra_symbols {
if extra.is_terminal() {
for entry in result.iter_mut() {
entry.insert(*extra);
}
result[extra.index] = all_tokens.clone();
}
}
}
pub(crate) fn build_parse_table<'a>(
syntax_grammar: &'a SyntaxGrammar,
lexical_grammar: &'a LexicalGrammar,
inlines: &'a InlinedProductionMap,
variable_info: &'a Vec<VariableInfo>,
) -> Result<(ParseTable, Vec<TokenSet>, Vec<ParseStateInfo<'a>>)> {
let item_set_builder = ParseItemSetBuilder::new(syntax_grammar, lexical_grammar, inlines);
let mut following_tokens = vec![TokenSet::new(); lexical_grammar.variables.len()];
populate_following_tokens(
&mut following_tokens,
syntax_grammar,
inlines,
&item_set_builder,
);
let (table, item_sets) = ParseTableBuilder {
syntax_grammar,
lexical_grammar,
item_set_builder,
variable_info,
non_terminal_extra_states: Vec::new(),
state_ids_by_item_set: HashMap::new(),
core_ids_by_core: HashMap::new(),
parse_state_info_by_id: Vec::new(),
parse_state_queue: VecDeque::new(),
parse_table: ParseTable {
states: Vec::new(),
symbols: Vec::new(),
external_lex_states: Vec::new(),
production_infos: Vec::new(),
max_aliased_production_length: 1,
},
}
.build()?;
Ok((table, following_tokens, item_sets))
}