Instead of child() vs concrete_child(), next_sibling() vs next_concrete_sibling(), etc, the default is switched: child() refers to the concrete syntax tree, and named_child() refers to the AST. Because the AST is abstract through exclusion of some nodes, the names are clearer if the qualifier goes on the AST operations
390 lines
14 KiB
C++
390 lines
14 KiB
C++
#include "runtime/runtime_spec_helper.h"
|
|
#include "runtime/parse_stack.h"
|
|
#include "runtime/tree.h"
|
|
#include "runtime/length.h"
|
|
|
|
enum {
|
|
stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH
|
|
};
|
|
|
|
enum {
|
|
symbol0 = ts_builtin_sym_start,
|
|
symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7
|
|
};
|
|
|
|
struct TreeSelectionSpy {
|
|
int call_count;
|
|
TSTree *tree_to_return;
|
|
const TSTree *arguments[2];
|
|
};
|
|
|
|
extern "C"
|
|
TSTree * tree_selection_spy_callback(void *data, TSTree *left, TSTree *right) {
|
|
TreeSelectionSpy *spy = (TreeSelectionSpy *)data;
|
|
spy->call_count++;
|
|
spy->arguments[0] = left;
|
|
spy->arguments[1] = right;
|
|
return spy->tree_to_return;
|
|
}
|
|
|
|
START_TEST
|
|
|
|
describe("ParseStack", [&]() {
|
|
ParseStack *stack;
|
|
const size_t tree_count = 8;
|
|
TSTree *trees[tree_count];
|
|
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
|
|
|
|
before_each([&]() {
|
|
stack = ts_parse_stack_new({
|
|
&tree_selection_spy,
|
|
tree_selection_spy_callback
|
|
});
|
|
|
|
TSLength len = ts_length_make(2, 2);
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
trees[i] = ts_tree_make_leaf(ts_builtin_sym_start + i, len, len, TSNodeTypeNamed);
|
|
});
|
|
|
|
after_each([&]() {
|
|
ts_parse_stack_delete(stack);
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
ts_tree_release(trees[i]);
|
|
});
|
|
|
|
describe("pushing entries to the stack", [&]() {
|
|
it("adds entries to the stack", [&]() {
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
|
|
|
|
/*
|
|
* A0.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateA, trees[0]);
|
|
const ParseStackEntry *entry1 = ts_parse_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<ParseStackEntry>({trees[0], stateA}));
|
|
AssertThat(ts_parse_stack_entry_next_count(entry1), Equals(1));
|
|
AssertThat(ts_parse_stack_entry_next(entry1, 0), Equals<const ParseStackEntry *>(nullptr));
|
|
|
|
/*
|
|
* A0__B1.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateB, trees[1]);
|
|
const ParseStackEntry *entry2 = ts_parse_stack_head(stack, 0);
|
|
AssertThat(*entry2, Equals<ParseStackEntry>({trees[1], stateB}));
|
|
AssertThat(ts_parse_stack_entry_next_count(entry2), Equals(1));
|
|
AssertThat(ts_parse_stack_entry_next(entry2, 0), Equals(entry1));
|
|
|
|
/*
|
|
* A0__B1__C2.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateC, trees[2]);
|
|
const ParseStackEntry *entry3 = ts_parse_stack_head(stack, 0);
|
|
AssertThat(*entry3, Equals<ParseStackEntry>({trees[2], stateC}));
|
|
AssertThat(ts_parse_stack_entry_next_count(entry3), Equals(1));
|
|
AssertThat(ts_parse_stack_entry_next(entry3, 0), Equals(entry2));
|
|
});
|
|
});
|
|
|
|
describe("popping nodes from the stack", [&]() {
|
|
ParseStackPopResultList pop;
|
|
|
|
before_each([&]() {
|
|
/*
|
|
* A0__B1__C2.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_parse_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_parse_stack_push(stack, 0, stateC, trees[2]);
|
|
});
|
|
|
|
it("removes the given number of nodes from the stack", [&]() {
|
|
/*
|
|
* A0.
|
|
*/
|
|
pop = ts_parse_stack_pop(stack, 0, 2, false);
|
|
AssertThat(pop.size, Equals(1));
|
|
AssertThat(pop.contents[0].tree_count, Equals(2));
|
|
AssertThat(pop.contents[0].trees[0], Equals(trees[1]));
|
|
AssertThat(pop.contents[0].trees[1], Equals(trees[2]));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[0], stateA}));
|
|
|
|
/*
|
|
* .
|
|
*/
|
|
pop = ts_parse_stack_pop(stack, 0, 1, false);
|
|
AssertThat(pop.size, Equals(1));
|
|
AssertThat(pop.contents[0].tree_count, Equals(1));
|
|
AssertThat(pop.contents[0].trees[0], Equals(trees[0]));
|
|
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
|
|
});
|
|
|
|
it("does not count 'extra' trees toward the count", [&]() {
|
|
ts_tree_set_extra(trees[1]);
|
|
|
|
pop = ts_parse_stack_pop(stack, 0, 2, false);
|
|
AssertThat(pop.size, Equals(1));
|
|
AssertThat(pop.contents[0].tree_count, Equals(3));
|
|
AssertThat(pop.contents[0].trees[0], Equals(trees[0]));
|
|
AssertThat(pop.contents[0].trees[1], Equals(trees[1]));
|
|
AssertThat(pop.contents[0].trees[2], Equals(trees[2]));
|
|
AssertThat(ts_parse_stack_head(stack, 0), Equals<const ParseStackEntry *>(nullptr));
|
|
});
|
|
|
|
it("pops the entire stack when given a negative count", [&]() {
|
|
pop = ts_parse_stack_pop(stack, 0, -1, false);
|
|
|
|
AssertThat(pop.size, Equals(1));
|
|
AssertThat(pop.contents[0].tree_count, Equals(3));
|
|
AssertThat(pop.contents[0].trees[0], Equals(trees[0]));
|
|
AssertThat(pop.contents[0].trees[1], Equals(trees[1]));
|
|
AssertThat(pop.contents[0].trees[2], Equals(trees[2]));
|
|
});
|
|
});
|
|
|
|
describe("splitting the stack", [&]() {
|
|
it("creates a new independent head with the same entries", [&]() {
|
|
/*
|
|
* A0__B1__C2.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_parse_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_parse_stack_push(stack, 0, stateC, trees[2]);
|
|
|
|
int new_index = ts_parse_stack_split(stack, 0);
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
AssertThat(new_index, Equals(1));
|
|
|
|
/*
|
|
* A0__B1__C2__D3.
|
|
* \.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_parse_stack_pop(stack, 1, 1, false);
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
|
|
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[1], stateB}));
|
|
|
|
/*
|
|
* A0__B1__C2__D3.
|
|
* \__E4__F3.
|
|
*/
|
|
ts_parse_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_parse_stack_push(stack, 1, stateF, trees[3]);
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
|
|
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[3], stateF}));
|
|
});
|
|
});
|
|
|
|
describe("pushing the same state onto two different heads of the stack", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* A0__B1__C2__D3.
|
|
* \__E4__F5.
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_parse_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_parse_stack_split(stack, 0);
|
|
ts_parse_stack_push(stack, 0, stateC, trees[2]);
|
|
ts_parse_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_parse_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_parse_stack_push(stack, 1, stateF, trees[5]);
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[3], stateD}));
|
|
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[5], stateF}));
|
|
});
|
|
|
|
describe("when the trees are identical", [&]() {
|
|
it("merges the heads", [&]() {
|
|
/*
|
|
* A0__B1__C2__D3__G6.
|
|
* \__E4__F5__/
|
|
*/
|
|
bool merged = ts_parse_stack_push(stack, 0, stateG, trees[6]);
|
|
AssertThat(merged, IsFalse());
|
|
merged = ts_parse_stack_push(stack, 1, stateG, trees[6]);
|
|
AssertThat(merged, IsTrue());
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
const ParseStackEntry *entry1 = ts_parse_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<ParseStackEntry>({trees[6], stateG}));
|
|
AssertThat(ts_parse_stack_entry_next_count(entry1), Equals(2));
|
|
AssertThat(*ts_parse_stack_entry_next(entry1, 0), Equals<ParseStackEntry>({trees[3], stateD}));
|
|
AssertThat(*ts_parse_stack_entry_next(entry1, 1), Equals<ParseStackEntry>({trees[5], stateF}));
|
|
});
|
|
});
|
|
|
|
describe("when the trees are different", [&]() {
|
|
before_each([&]() {
|
|
tree_selection_spy.tree_to_return = trees[7];
|
|
AssertThat(tree_selection_spy.call_count, Equals(0));
|
|
});
|
|
|
|
it("merges the heads, selecting the tree with the tree selection callback", [&]() {
|
|
/*
|
|
* A0__B1__C2__D3__G(6|7)
|
|
* \__E4__F5____/
|
|
*/
|
|
bool merged = ts_parse_stack_push(stack, 0, stateG, trees[6]);
|
|
AssertThat(merged, IsFalse());
|
|
merged = ts_parse_stack_push(stack, 1, stateG, trees[7]);
|
|
AssertThat(merged, IsTrue());
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
AssertThat(tree_selection_spy.call_count, Equals(1));
|
|
AssertThat(tree_selection_spy.arguments[0], Equals(trees[6]));
|
|
AssertThat(tree_selection_spy.arguments[1], Equals(trees[7]));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({
|
|
trees[7],
|
|
stateG
|
|
}));
|
|
});
|
|
});
|
|
|
|
describe("when successor nodes of the merged nodes have the same state", [&]() {
|
|
it("recursively merges those successor nodes", [&]() {
|
|
/*
|
|
* A0__B1__C2__D3__G6__H7.
|
|
* \__E4__F5__G6.
|
|
*/
|
|
bool merged = ts_parse_stack_push(stack, 0, stateG, trees[6]);
|
|
AssertThat(merged, IsFalse());
|
|
merged = ts_parse_stack_push(stack, 0, stateH, trees[7]);
|
|
AssertThat(merged, IsFalse());
|
|
merged = ts_parse_stack_push(stack, 1, stateG, trees[6]);
|
|
AssertThat(merged, IsFalse());
|
|
|
|
/*
|
|
* A0__B1__C2__D3__G6__H7.
|
|
* \__E4__F5_/
|
|
*/
|
|
merged = ts_parse_stack_push(stack, 1, stateH, trees[7]);
|
|
AssertThat(merged, IsTrue());
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
ParseStackEntry *head = ts_parse_stack_head(stack, 0);
|
|
AssertThat(*head, Equals<ParseStackEntry>({trees[7], stateH}))
|
|
AssertThat(ts_parse_stack_entry_next_count(head), Equals(1));
|
|
|
|
ParseStackEntry *next = ts_parse_stack_entry_next(head, 0);
|
|
AssertThat(*next, Equals<ParseStackEntry>({trees[6], stateG}))
|
|
AssertThat(ts_parse_stack_entry_next_count(next), Equals(2));
|
|
});
|
|
});
|
|
});
|
|
|
|
describe("popping from a stack head that has been merged", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* A0__B1__C2__D3__G6.
|
|
* \__E4__F5__/
|
|
*/
|
|
ts_parse_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_parse_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_parse_stack_split(stack, 0);
|
|
ts_parse_stack_push(stack, 0, stateC, trees[2]);
|
|
ts_parse_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_parse_stack_push(stack, 0, stateG, trees[6]);
|
|
ts_parse_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_parse_stack_push(stack, 1, stateF, trees[5]);
|
|
ts_parse_stack_push(stack, 1, stateG, trees[6]);
|
|
});
|
|
|
|
describe("when there are two paths that lead to two different heads", [&]() {
|
|
it("returns an entry for each revealed head", [&]() {
|
|
/*
|
|
* A0__B1__C2.
|
|
* \__E4.
|
|
*/
|
|
ParseStackPopResultList pop = ts_parse_stack_pop(stack, 0, 2, false);
|
|
|
|
AssertThat(pop.size, Equals(2));
|
|
ParseStackPopResult pop1 = pop.contents[0];
|
|
AssertThat(pop1.index, Equals(0));
|
|
AssertThat(pop1.tree_count, Equals(2));
|
|
AssertThat(pop1.trees[0], Equals(trees[3]));
|
|
AssertThat(pop1.trees[1], Equals(trees[6]));
|
|
|
|
ParseStackPopResult pop2 = pop.contents[1];
|
|
AssertThat(pop2.index, Equals(1));
|
|
AssertThat(pop2.tree_count, Equals(2));
|
|
AssertThat(pop2.trees[0], Equals(trees[5]));
|
|
AssertThat(pop2.trees[1], Equals(trees[6]));
|
|
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[2], stateC}));
|
|
AssertThat(*ts_parse_stack_head(stack, 1), Equals<ParseStackEntry>({trees[4], stateE}));
|
|
});
|
|
});
|
|
|
|
describe("when there is one path, leading to one head", [&]() {
|
|
it("returns a single entry", [&]() {
|
|
/*
|
|
* A0__B1__C2__D3__G6__H7.
|
|
* \__E4__F5__/
|
|
*/
|
|
bool merged = ts_parse_stack_push(stack, 0, stateH, trees[7]);
|
|
AssertThat(merged, IsFalse());
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
|
|
/*
|
|
* A0__B1__C2__D3__G6.
|
|
* \__E4__F5__/
|
|
*/
|
|
ParseStackPopResultList pop = ts_parse_stack_pop(stack, 0, 1, false);
|
|
|
|
AssertThat(pop.size, Equals(1));
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
});
|
|
});
|
|
|
|
describe("when there is one path that leads to two different heads", [&]() {
|
|
it("returns two entries with the same array of trees", [&]() {
|
|
/*
|
|
* A0__B1__C2__D3.
|
|
* \__E4__F5.
|
|
*/
|
|
ParseStackPopResultList pop = ts_parse_stack_pop(stack, 0, 1, false);
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(2));
|
|
|
|
AssertThat(pop.size, Equals(2));
|
|
AssertThat(pop.contents[0].index, Equals(0));
|
|
AssertThat(pop.contents[1].index, Equals(1));
|
|
AssertThat(pop.contents[0].trees, Equals(pop.contents[1].trees));
|
|
});
|
|
});
|
|
|
|
describe("when there are two paths that converge at the same head", [&]() {
|
|
it("returns two entries for that head", [&]() {
|
|
/*
|
|
* A0__B1.
|
|
*/
|
|
ParseStackPopResultList pop = ts_parse_stack_pop(stack, 0, 3, false);
|
|
AssertThat(ts_parse_stack_head_count(stack), Equals(1));
|
|
AssertThat(*ts_parse_stack_head(stack, 0), Equals<ParseStackEntry>({trees[1], stateB}));
|
|
|
|
AssertThat(pop.size, Equals(2));
|
|
AssertThat(pop.contents[0].tree_count, Equals(3));
|
|
AssertThat(pop.contents[0].index, Equals(0));
|
|
AssertThat(pop.contents[0].trees[0], Equals(trees[2]));
|
|
AssertThat(pop.contents[1].tree_count, Equals(3));
|
|
AssertThat(pop.contents[1].index, Equals(0));
|
|
AssertThat(pop.contents[1].trees[0], Equals(trees[4]));
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
END_TEST
|
|
|
|
bool operator==(const ParseStackEntry &left, const ParseStackEntry &right) {
|
|
return left.state == right.state && ts_tree_eq(left.tree, right.tree);
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const ParseStackEntry &entry) {
|
|
return stream << "{" << entry.state << ", " << entry.tree << "}";
|
|
}
|