tree-sitter/test/runtime/stack_test.cc
2017-12-27 10:34:29 -08:00

569 lines
21 KiB
C++

#include "test_helper.h"
#include "helpers/tree_helpers.h"
#include "helpers/point_helpers.h"
#include "helpers/record_alloc.h"
#include "helpers/stream_methods.h"
#include "runtime/stack.h"
#include "runtime/tree.h"
#include "runtime/length.h"
#include "runtime/alloc.h"
enum {
stateA = 2,
stateB,
stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
};
enum {
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
symbol9, symbol10
};
Length operator*(const Length &length, uint32_t factor) {
return {length.bytes * factor, {0, length.extent.column * factor}};
}
void free_slice_array(TreePool *pool, StackSliceArray *slices) {
for (size_t i = 0; i < slices->size; i++) {
StackSlice slice = slices->contents[i];
bool matches_prior_trees = false;
for (size_t j = 0; j < i; j++) {
StackSlice prior_slice = slices->contents[j];
if (slice.trees.contents == prior_slice.trees.contents) {
matches_prior_trees = true;
break;
}
}
if (!matches_prior_trees) {
for (size_t j = 0; j < slice.trees.size; j++)
ts_tree_release(pool, slice.trees.contents[j]);
array_delete(&slice.trees);
}
}
}
struct StackEntry {
TSStateId state;
size_t depth;
};
vector<StackEntry> get_stack_entries(Stack *stack, StackVersion version) {
vector<StackEntry> result;
ts_stack_iterate(
stack,
version,
[](void *payload, TSStateId state, const TreeArray *trees, uint32_t tree_count) -> StackIterateAction {
auto entries = static_cast<vector<StackEntry> *>(payload);
StackEntry entry = {state, tree_count};
if (find(entries->begin(), entries->end(), entry) == entries->end()) {
entries->push_back(entry);
}
return StackIterateNone;
}, &result);
return result;
}
START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t tree_count = 11;
Tree *trees[tree_count];
Length tree_len = {3, {0, 3}};
TreePool pool;
before_each([&]() {
record_alloc::start();
ts_tree_pool_init(&pool);
stack = ts_stack_new(&pool);
TSLanguage dummy_language;
TSSymbolMetadata symbol_metadata[50] = {};
dummy_language.symbol_metadata = symbol_metadata;
for (size_t i = 0; i < tree_count; i++) {
trees[i] = ts_tree_make_leaf(&pool, i, length_zero(), tree_len, &dummy_language);
}
});
after_each([&]() {
ts_stack_delete(stack);
for (size_t i = 0; i < tree_count; i++) {
ts_tree_release(&pool, trees[i]);
}
ts_tree_pool_delete(&pool);
record_alloc::stop();
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
});
describe("push(version, tree, is_pending, state)", [&]() {
it("adds entries to the given version of the stack", [&]() {
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(1));
AssertThat(ts_stack_top_position(stack, 0), Equals(length_zero()));
// . <──0── A*
ts_stack_push(stack, 0, trees[0], false, stateA);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateA));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len));
// . <──0── A <──1── B*
ts_stack_push(stack, 0, trees[1], false, stateB);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[2], false, stateC);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{1, 3},
})));
});
});
describe("merge()", [&]() {
before_each([&]() {
// . <──0── A <──1── B*
// ↑
// └───2─── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_copy_version(stack, 0);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 1, trees[2], false, stateC);
});
it("combines versions that have the same top states and positions", [&]() {
// . <──0── A <──1── B <──3── D*
// ↑
// └───2─── C <──4── D*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
// . <──0── A <──1── B <──3── D*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateB, 1},
{stateC, 1},
{stateA, 2},
{1, 3},
})));
});
it("does not combine versions that have different states", [&]() {
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
it("does not combine versions that have different positions", [&]() {
// . <──0── A <──1── B <────3──── D*
// ↑
// └───2─── C <──4── D*
trees[3]->size = tree_len * 3;
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
describe("when the merged versions have more than one common entry", [&]() {
it("combines all of the top common entries", [&]() {
// . <──0── A <──1── B <──3── D <──5── E*
// ↑
// └───2─── C <──4── D <──5── E*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 0, trees[5], false, stateE);
ts_stack_push(stack, 1, trees[4], false, stateD);
ts_stack_push(stack, 1, trees[5], false, stateE);
// . <──0── A <──1── B <──3── D <──5── E*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateE, 0},
{stateD, 1},
{stateB, 2},
{stateC, 2},
{stateA, 3},
{1, 4},
})));
});
});
});
describe("pop_count(version, count)", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
});
it("creates a new version with the given number of entries removed", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.trees, Equals(vector<Tree *>({ trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pool,&pop.slices);
});
it("does not count 'extra' trees toward the given count", [&]() {
trees[1]->extra = true;
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.trees, Equals(vector<Tree *>({ trees[0], trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(1));
free_slice_array(&pool,&pop.slices);
});
describe("when the version has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// └───4─── E <──5── F <──6───┘
ts_stack_push(stack, 0, trees[3], false, stateD);
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
free_slice_array(&pool,&pop.slices);
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
ts_stack_push(stack, 1, trees[6], false, stateD);
ts_stack_merge(stack, 0, 1);
ts_stack_push(stack, 0, trees[10], false, stateI);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
});
describe("when there are two paths that reveal different versions", [&]() {
it("returns an entry for each revealed version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// └───4─── E*
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<Tree *>({ trees[2], trees[3], trees[10] })));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<Tree *>({ trees[5], trees[6], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
AssertThat(get_stack_entries(stack, 2), Equals(vector<StackEntry>({
{stateE, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pool,&pop.slices);
});
});
describe("when there is one path that ends at a merged version", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// | |
// └───5─── F <──6── G <──7───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<Tree *>({ trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateD));
free_slice_array(&pool,&pop.slices);
});
});
describe("when there are two paths that converge on one version", [&]() {
it("returns two slices with the same version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
AssertThat(pop.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<Tree *>({ trees[1], trees[2], trees[3], trees[10] })));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(1));
AssertThat(slice2.trees, Equals(vector<Tree *>({ trees[4], trees[5], trees[6], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pool,&pop.slices);
});
});
describe("when there are three paths that lead to three different versions", [&]() {
it("returns three entries with different arrays of trees", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// | |
// └───7─── G <──8── H <──9───┘
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
free_slice_array(&pool,&pop.slices);
ts_stack_push(stack, 1, trees[7], false, stateG);
ts_stack_push(stack, 1, trees[8], false, stateH);
ts_stack_push(stack, 1, trees[9], false, stateD);
ts_stack_push(stack, 1, trees[10], false, stateI);
ts_stack_merge(stack, 0, 1);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{1, 5},
})));
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.slices.size, Equals<size_t>(3));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<Tree *>({ trees[3], trees[10] })));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<Tree *>({ trees[6], trees[10] })));
StackSlice slice3 = pop.slices.contents[2];
AssertThat(slice3.version, Equals<StackVersion>(3));
AssertThat(slice3.trees, Equals(vector<Tree *>({ trees[9], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(4));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
AssertThat(ts_stack_top_state(stack, 2), Equals(stateF));
AssertThat(ts_stack_top_state(stack, 3), Equals(stateH));
free_slice_array(&pool,&pop.slices);
});
});
});
});
describe("pop_pending(version)", [&]() {
before_each([&]() {
ts_stack_push(stack, 0, trees[0], false, stateA);
});
it("removes the top node from the stack if it was pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], true, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pool,&pop.slices);
});
it("skips entries whose trees are extra", [&]() {
ts_stack_push(stack, 0, trees[1], true, stateB);
trees[2]->extra = true;
trees[3]->extra = true;
ts_stack_push(stack, 0, trees[2], false, stateB);
ts_stack_push(stack, 0, trees[3], false, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(pop.slices.contents[0].trees, Equals(vector<Tree *>({ trees[1], trees[2], trees[3] })));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pool,&pop.slices);
});
it("does nothing if the top node was not pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], false, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.slices.size, Equals<size_t>(0));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pool,&pop.slices);
});
});
describe("setting external token state", [&]() {
before_each([&]() {
trees[1]->has_external_tokens = true;
trees[2]->has_external_tokens = true;
ts_external_token_state_init(&trees[1]->external_token_state, NULL, 0);
ts_external_token_state_init(&trees[2]->external_token_state, NULL, 0);
});
it("allows the state to be retrieved", [&]() {
AssertThat(ts_stack_last_external_token(stack, 0), Equals<Tree *>(nullptr));
ts_stack_set_last_external_token(stack, 0, trees[1]);
AssertThat(ts_stack_last_external_token(stack, 0), Equals(trees[1]));
ts_stack_copy_version(stack, 0);
AssertThat(ts_stack_last_external_token(stack, 1), Equals(trees[1]));
ts_stack_set_last_external_token(stack, 0, trees[2]);
AssertThat(ts_stack_last_external_token(stack, 0), Equals(trees[2]));
});
it("does not merge stack versions with different external token states", [&]() {
ts_external_token_state_init(&trees[1]->external_token_state, "abcd", 2);
ts_external_token_state_init(&trees[2]->external_token_state, "ABCD", 2);
ts_stack_copy_version(stack, 0);
ts_stack_push(stack, 0, trees[0], false, 5);
ts_stack_push(stack, 1, trees[0], false, 5);
ts_stack_set_last_external_token(stack, 0, trees[1]);
ts_stack_set_last_external_token(stack, 1, trees[2]);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
});
it("merges stack versions with identical external token states", [&]() {
ts_external_token_state_init(&trees[1]->external_token_state, "abcd", 2);
ts_external_token_state_init(&trees[2]->external_token_state, "abcd", 2);
ts_stack_copy_version(stack, 0);
ts_stack_push(stack, 0, trees[0], false, 5);
ts_stack_push(stack, 1, trees[0], false, 5);
ts_stack_set_last_external_token(stack, 0, trees[1]);
ts_stack_set_last_external_token(stack, 1, trees[2]);
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
});
it("does not distinguish between an *empty* external token state and *no* external token state", [&]() {
ts_stack_copy_version(stack, 0);
ts_stack_push(stack, 0, trees[0], false, 5);
ts_stack_push(stack, 1, trees[0], false, 5);
ts_stack_set_last_external_token(stack, 0, trees[1]);
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
});
});
});
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && left.depth == right.depth;
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.depth << "}";
}
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
stream << "[";
bool first = true;
for (size_t i = 0; i < array.size; i++) {
if (!first)
stream << ", ";
first = false;
stream << array.contents[i];
}
return stream << "]";
}