tree-sitter/spec/compiler/rules/character_set_spec.cc
2014-08-07 08:11:21 -07:00

112 lines
3.9 KiB
C++

#include "compiler/compiler_spec_helper.h"
#include "compiler/rules/character_set.h"
using namespace rules;
START_TEST
describe("character sets", []() {
unsigned char max_char = 255;
describe("computing the complement", [&]() {
it("works for the set containing only the null character", [&]() {
CharacterSet set1({ '\0' });
auto set2 = set1.complement();
AssertThat(set2, Equals(CharacterSet({
{ 1, max_char }
})));
AssertThat(set2.complement(), Equals(set1));
});
it("works for single character sets", [&]() {
CharacterSet set1({ 'b' });
auto set2 = set1.complement();
AssertThat(set2, Equals(CharacterSet({
{ 0, 'a' },
{ 'c', max_char },
})));
AssertThat(set2.complement(), Equals(set1));
});
});
describe("computing unions", [&]() {
it("works for disjoint sets", [&]() {
CharacterSet set({ {'a', 'z'} });
set.add_set(CharacterSet({ {'A', 'Z'} }));
AssertThat(set, Equals(CharacterSet({ {'a', 'z'}, {'A', 'Z'} })));
});
it("works for sets with adjacent ranges", [&]() {
CharacterSet set({ CharacterRange('a', 'r') });
set.add_set(CharacterSet({ CharacterRange('s', 'z') }));
AssertThat(set, Equals(CharacterSet({ {'a', 'z'} })));
});
it("becomes the complete set when the complement is added", [&]() {
CharacterSet set({ 'c' });
auto complement = set.complement();
set.add_set(complement);
AssertThat(set, Equals(CharacterSet({ {0, max_char} })));
});
it("works when the result becomes a continuous range", []() {
CharacterSet set({ {'a', 'd'}, {'f', 'z'} });
set.add_set(CharacterSet({ {'c', 'g'} }));
AssertThat(set, Equals(CharacterSet({ {'a', 'z'} })));
});
it("does nothing for the set of all characters", [&]() {
CharacterSet set({ 'a' });
set.add_set(set.complement());
AssertThat(set, Equals(CharacterSet({ {'\0', max_char} })));
});
});
describe("subtracting sets", []() {
CharacterSet intersection;
it("works for disjoint sets", [&]() {
CharacterSet set1({ {'a', 'z'} });
intersection = set1.remove_set(CharacterSet({ {'A', 'Z'} }));
AssertThat(set1, Equals(CharacterSet({ {'a', 'z'} })));
AssertThat(intersection, Equals(CharacterSet()));
});
it("works when one set is a proper subset of the other", [&]() {
CharacterSet set1({ {'a','z'} });
intersection = set1.remove_set(CharacterSet({ {'d', 's'} }));
AssertThat(set1, Equals(CharacterSet({ {'a', 'c'}, {'t', 'z'} })));
AssertThat(intersection, Equals(CharacterSet({ {'d', 's'} })));
});
it("works for a set that overlaps the right side", [&]() {
CharacterSet set1({ {'a','s'} });
intersection = set1.remove_set(CharacterSet({ {'m', 'z'} }));
AssertThat(set1, Equals(CharacterSet({ {'a', 'l'} })));
AssertThat(intersection, Equals(CharacterSet({ {'m', 's'} })));
});
it("works for a set that overlaps the left side", [&]() {
CharacterSet set2({ {'m','z'} });
intersection = set2.remove_set(CharacterSet({ {'a', 's'} }));
AssertThat(set2, Equals(CharacterSet({ {'t', 'z'} })));
AssertThat(intersection, Equals(CharacterSet({ {'m', 's'} })));
});
it("works for sets with multiple ranges", [&]() {
CharacterSet set1({ {'a', 'd'}, {'m', 'z'} });
intersection = set1.remove_set(CharacterSet({ {'c', 'o'}, {'s', 'x'} }));
AssertThat(set1, Equals(CharacterSet({ {'a', 'b'}, {'p', 'r'}, {'y', 'z'} })));
AssertThat(intersection, Equals(CharacterSet({ {'c', 'd'}, {'m', 'o'}, {'s', 'x'} })));
});
it("works when the result is empty", [&]() {
CharacterSet set1({ 'd' });
intersection = set1.remove_set(CharacterSet({ 'a', 'd', 'x' }));
AssertThat(set1, Equals(CharacterSet()));
AssertThat(intersection, Equals(CharacterSet({ 'd' })));
});
});
});
END_TEST