509 lines
20 KiB
C++
509 lines
20 KiB
C++
#include "spec_helper.h"
|
|
#include "helpers/tree_helpers.h"
|
|
#include "helpers/record_alloc.h"
|
|
#include "helpers/stream_methods.h"
|
|
#include "runtime/stack.h"
|
|
#include "runtime/tree.h"
|
|
#include "runtime/length.h"
|
|
#include "runtime/alloc.h"
|
|
|
|
enum {
|
|
stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
|
|
};
|
|
|
|
enum {
|
|
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
|
|
symbol9, symbol10
|
|
};
|
|
|
|
struct TreeSelectionSpy {
|
|
int call_count;
|
|
TSTree *tree_to_return;
|
|
const TSTree *arguments[2];
|
|
};
|
|
|
|
TSLength operator*(const TSLength &length, size_t factor) {
|
|
return {length.bytes * factor, length.chars * factor, 0, length.columns * factor};
|
|
}
|
|
|
|
extern "C"
|
|
int tree_selection_spy_callback(void *data, TSTree *left, TSTree *right) {
|
|
TreeSelectionSpy *spy = (TreeSelectionSpy *)data;
|
|
spy->call_count++;
|
|
spy->arguments[0] = left;
|
|
spy->arguments[1] = right;
|
|
if (spy->tree_to_return == left)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
void free_slice_array(StackSliceArray *slices) {
|
|
for (size_t i = 0; i < slices->size; i++) {
|
|
StackSlice slice = slices->contents[i];
|
|
|
|
bool matches_prior_trees = false;
|
|
for (size_t j = 0; j < i; j++) {
|
|
StackSlice prior_slice = slices->contents[j];
|
|
if (slice.trees.contents == prior_slice.trees.contents) {
|
|
matches_prior_trees = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!matches_prior_trees) {
|
|
for (size_t j = 0; j < slice.trees.size; j++)
|
|
ts_tree_release(slice.trees.contents[j]);
|
|
array_delete(&slice.trees);
|
|
}
|
|
}
|
|
}
|
|
|
|
START_TEST
|
|
|
|
describe("Stack", [&]() {
|
|
Stack *stack;
|
|
const size_t tree_count = 11;
|
|
TSTree *trees[tree_count];
|
|
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
|
|
TSLength tree_len = {2, 3, 0, 3};
|
|
TSSymbolMetadata metadata = {true, true, true, true};
|
|
|
|
before_each([&]() {
|
|
record_alloc::start();
|
|
|
|
stack = ts_stack_new();
|
|
|
|
ts_stack_set_tree_selection_callback(stack,
|
|
&tree_selection_spy,
|
|
tree_selection_spy_callback
|
|
);
|
|
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
trees[i] = ts_tree_make_leaf(i, ts_length_zero(), tree_len, {
|
|
true, true, false, true,
|
|
});
|
|
});
|
|
|
|
after_each([&]() {
|
|
ts_stack_delete(stack);
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
ts_tree_release(trees[i]);
|
|
|
|
record_alloc::stop();
|
|
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
|
|
});
|
|
|
|
describe("pushing entries to the stack", [&]() {
|
|
it("adds entries to the stack", [&]() {
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
// . <──0── A*
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
const StackEntry *entry1 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<StackEntry>({stateA, tree_len}));
|
|
AssertThat(ts_stack_entry_next_count(entry1), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry1, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
// . <──0── A <──1── B*
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
const StackEntry *entry2 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry2, Equals<StackEntry>({stateB, tree_len * 2}));
|
|
AssertThat(ts_stack_entry_next_count(entry2), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry2, 0), Equals(entry1));
|
|
|
|
// . <──0── A <──1── B <──2── C*
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
const StackEntry *entry3 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry3, Equals<StackEntry>({stateC, tree_len * 3}));
|
|
AssertThat(ts_stack_entry_next_count(entry3), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry3, 0), Equals(entry2));
|
|
});
|
|
});
|
|
|
|
describe("popping nodes from the stack", [&]() {
|
|
before_each([&]() {
|
|
// . <──0── A <──1── B <──2── C*
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
});
|
|
|
|
it("removes the given number of nodes from the stack", [&]() {
|
|
// . <──0── A*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
|
|
StackSlice slice = slices.contents[0];
|
|
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateA, tree_len}));
|
|
free_slice_array(&slices);
|
|
|
|
// .*
|
|
slices = ts_stack_pop(stack, 0, 1, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
|
|
slice = slices.contents[0];
|
|
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0] })));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
|
|
it("does not count 'extra' trees toward the count", [&]() {
|
|
trees[1]->extra = true;
|
|
|
|
// .*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
|
|
StackSlice slice = slices.contents[0];
|
|
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
|
|
it("pops the entire stack when given a negative count", [&]() {
|
|
// .*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, -1, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
|
|
StackSlice slice = slices.contents[0];
|
|
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
|
|
it("stops immediately when removing an error", [&]() {
|
|
trees[2]->symbol = ts_builtin_sym_error;
|
|
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
|
|
StackSlice slice = slices.contents[0];
|
|
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[2] })));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
|
|
describe("splitting the stack", [&]() {
|
|
it("creates a new independent head with the same entries", [&]() {
|
|
// . <──0── A <──1── B <──2── C*
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
|
|
// . <──0── A <──1── B <──2── C*
|
|
// ↑
|
|
// └─*
|
|
int new_index = ts_stack_split(stack, 0);
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(new_index, Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
|
|
|
|
// . <──0── A <──1── B <──2── C <──3── D*
|
|
// ↑
|
|
// └─*
|
|
ts_stack_push(stack, 0, trees[3], stateD);
|
|
StackSliceArray slices = ts_stack_pop(stack, 1, 1, false);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
StackSlice slice = slices.contents[0];
|
|
AssertThat(slice.trees.size, Equals<size_t>(1));
|
|
free_slice_array(&slices);
|
|
|
|
// . <──0── A <──1── B <──2── C <──3── D*
|
|
// ↑
|
|
// └───4─── E <──5── F*
|
|
ts_stack_push(stack, 1, trees[4], stateE);
|
|
ts_stack_push(stack, 1, trees[5], stateF);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
});
|
|
|
|
describe("pushing the same state onto two different heads of the stack", [&]() {
|
|
before_each([&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D*
|
|
// ↑
|
|
// └───4─── E <──5── F*
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
ts_stack_push(stack, 0, trees[3], stateD);
|
|
ts_stack_push(stack, 1, trees[4], stateE);
|
|
ts_stack_push(stack, 1, trees[5], stateF);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
|
|
it("merges the heads", [&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D <──6── G*
|
|
// ↑ |
|
|
// └───4─── E <──5── F <──7───┘
|
|
AssertThat(ts_stack_push(stack, 0, trees[6], stateG), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_push(stack, 1, trees[7], stateG), Equals(StackPushMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
const StackEntry *entry1 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<StackEntry>({stateG, tree_len * 5}));
|
|
AssertThat(ts_stack_entry_next_count(entry1), Equals(2));
|
|
AssertThat(*ts_stack_entry_next(entry1, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_entry_next(entry1, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
|
|
describe("when the merged nodes share a successor", [&]() {
|
|
it("recursively merges the successor nodes", [&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
|
|
// ↑
|
|
// └───4─── E <──5── F <──8── G*
|
|
AssertThat(ts_stack_push(stack, 0, trees[6], stateG), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_push(stack, 0, trees[7], stateH), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_push(stack, 1, trees[6], stateG), Equals(StackPushContinued));
|
|
|
|
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
|
|
// ↑ |
|
|
// └───4─── E <──5── F <──8───┘
|
|
AssertThat(ts_stack_push(stack, 1, trees[7], stateH), Equals(StackPushMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
StackEntry *head = ts_stack_head(stack, 0);
|
|
AssertThat(*head, Equals<StackEntry>({stateH, tree_len * 6}))
|
|
AssertThat(ts_stack_entry_next_count(head), Equals(1));
|
|
|
|
StackEntry *next = ts_stack_entry_next(head, 0);
|
|
AssertThat(*next, Equals<StackEntry>({stateG, tree_len * 5}))
|
|
AssertThat(ts_stack_entry_next_count(next), Equals(2));
|
|
});
|
|
});
|
|
|
|
describe("when the first head is only one node deep", [&]() {
|
|
it("creates a node with one null successor and one non-null successor", [&]() {
|
|
ts_tree_retain(trees[2]);
|
|
ts_tree_retain(trees[3]);
|
|
TSTree *parent = ts_tree_make_node(5, 2, tree_array({ trees[2], trees[3] }), metadata);
|
|
|
|
// . <──2── B <──3── C
|
|
// ↑ |
|
|
// └────────5────────┘
|
|
ts_stack_clear(stack);
|
|
ts_stack_split(stack, 0);
|
|
AssertThat(ts_stack_push(stack, 0, parent, stateC), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_push(stack, 1, trees[2], stateB), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_push(stack, 1, trees[3], stateC), Equals(StackPushMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
StackEntry *head = ts_stack_head(stack, 0);
|
|
AssertThat(*head, Equals<StackEntry>({stateC, tree_len * 2}));
|
|
|
|
AssertThat(ts_stack_entry_next_count(head), Equals(2));
|
|
AssertThat(ts_stack_entry_next(head, 0), Equals<StackEntry *>(nullptr));
|
|
AssertThat(*ts_stack_entry_next(head, 1), Equals<StackEntry>({stateB, tree_len}));
|
|
|
|
ts_tree_release(parent);
|
|
});
|
|
});
|
|
});
|
|
|
|
describe("popping from a stack head that has been merged", [&]() {
|
|
before_each([&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
|
|
// ↑ |
|
|
// └───5─── F <──6── G <──7───┘
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
ts_stack_push(stack, 0, trees[3], stateD);
|
|
ts_stack_push(stack, 0, trees[4], stateE);
|
|
ts_stack_push(stack, 1, trees[5], stateF);
|
|
ts_stack_push(stack, 1, trees[6], stateG);
|
|
ts_stack_push(stack, 1, trees[7], stateE);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(2));
|
|
});
|
|
|
|
describe("when there are two paths that lead to two different heads", [&]() {
|
|
it("returns an entry for each revealed head", [&]() {
|
|
// . <──0── A <──1── B <──2── C*
|
|
// ↑
|
|
// └───5─── F*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 2, false);
|
|
|
|
AssertThat(slices.size, Equals<size_t>(2));
|
|
StackSlice slice1 = slices.contents[0];
|
|
AssertThat(slice1.head_index, Equals(0));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
|
|
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[4] })));
|
|
|
|
StackSlice slice2 = slices.contents[1];
|
|
AssertThat(slice2.head_index, Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
|
|
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateC, tree_len * 3}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 3}));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
|
|
describe("when there is one path, leading to one head", [&]() {
|
|
it("returns a single entry", [&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D <──4── E <──8──H*
|
|
// ↑ |
|
|
// └───5─── F <──6── G <──7───┘
|
|
AssertThat(ts_stack_push(stack, 0, trees[8], stateH), Equals(StackPushContinued));
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateH));
|
|
|
|
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
|
|
// ↑ |
|
|
// └───5─── F <──6── G <──7───┘
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 1, false);
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
StackSlice slice1 = slices.contents[0];
|
|
AssertThat(slice1.head_index, Equals(0));
|
|
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[8] })));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
|
|
describe("when there are two paths that converge at the same head", [&]() {
|
|
describe("when the first path is preferred by the callback", [&]() {
|
|
it("returns one entry for that head, with the first path of trees", [&]() {
|
|
tree_selection_spy.tree_to_return = trees[2];
|
|
|
|
// . <──0── A <──1── B*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 3, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
StackSlice slice1 = slices.contents[0];
|
|
AssertThat(slice1.head_index, Equals(0));
|
|
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[4] })));
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
|
|
describe("when the second path is preferred by the callback", [&]() {
|
|
it("returns one entry for that head, with the second path of trees", [&]() {
|
|
tree_selection_spy.tree_to_return = trees[4];
|
|
|
|
// . <──0── A <──1── B*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 3, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
|
|
AssertThat(slices.size, Equals<size_t>(1));
|
|
StackSlice slice1 = slices.contents[0];
|
|
AssertThat(slice1.head_index, Equals(0));
|
|
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[7] })))
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
describe("popping from a stack head that has been 3-way merged", [&]() {
|
|
before_each([&]() {
|
|
// . <──0── A <──1── B <──2── C <──3── D <──10── I
|
|
// ↑ |
|
|
// ├───4─── E <──5── F <──6───┤
|
|
// | |
|
|
// └───7─── G <──8── H <──9───┘
|
|
ts_stack_clear(stack);
|
|
ts_stack_push(stack, 0, trees[0], stateA);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_split(stack, 1);
|
|
ts_stack_push(stack, 0, trees[1], stateB);
|
|
ts_stack_push(stack, 0, trees[2], stateC);
|
|
ts_stack_push(stack, 0, trees[3], stateD);
|
|
ts_stack_push(stack, 1, trees[4], stateE);
|
|
ts_stack_push(stack, 1, trees[5], stateF);
|
|
ts_stack_push(stack, 1, trees[6], stateD);
|
|
ts_stack_push(stack, 1, trees[7], stateG);
|
|
ts_stack_push(stack, 1, trees[8], stateH);
|
|
ts_stack_push(stack, 1, trees[9], stateD);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(3));
|
|
ts_stack_push(stack, 0, trees[10], stateI);
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(1));
|
|
});
|
|
|
|
describe("when there are three different paths that lead to three different heads", [&]() {
|
|
it("returns three entries with different arrays of trees", [&]() {
|
|
// . <──0── A <──1── B <──2── C*
|
|
// ↑
|
|
// ├───4─── E <──5── F*
|
|
// |
|
|
// └───7─── G <──8── H*
|
|
StackSliceArray slices = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(3));
|
|
|
|
AssertThat(slices.size, Equals<size_t>(3));
|
|
|
|
StackSlice slice1 = slices.contents[0];
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
|
|
AssertThat(slice1.head_index, Equals(0));
|
|
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
|
|
|
|
StackSlice slice2 = slices.contents[1];
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
|
|
AssertThat(slice2.head_index, Equals(1));
|
|
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
|
|
|
|
StackSlice slice3 = slices.contents[2];
|
|
AssertThat(ts_stack_top_state(stack, 2), Equals(stateH));
|
|
AssertThat(slice3.head_index, Equals(2));
|
|
AssertThat(slice3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
|
|
|
|
free_slice_array(&slices);
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
END_TEST
|
|
|
|
bool operator==(const StackEntry &left, const StackEntry &right) {
|
|
return left.state == right.state && ts_length_eq(left.position, right.position);
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
|
|
return stream << "{" << entry.state << ", " << entry.position << "}";
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
|
|
stream << "[";
|
|
bool first = true;
|
|
for (size_t i = 0; i < array.size; i++) {
|
|
if (!first)
|
|
stream << ", ";
|
|
first = false;
|
|
stream << array.contents[i];
|
|
}
|
|
return stream << "]";
|
|
}
|