tree-sitter/cli/src/generate/render.rs

1730 lines
62 KiB
Rust

use super::{
char_tree::{CharacterTree, Comparator},
grammars::{ExternalToken, LexicalGrammar, SyntaxGrammar, VariableType},
rules::{Alias, AliasMap, Symbol, SymbolType},
tables::{
AdvanceAction, FieldLocation, GotoAction, LexState, LexTable, ParseAction, ParseTable,
ParseTableEntry,
},
};
use core::ops::Range;
use std::{
cmp,
collections::{HashMap, HashSet},
fmt::Write,
mem::swap,
};
const LARGE_CHARACTER_RANGE_COUNT: usize = 8;
const SMALL_STATE_THRESHOLD: usize = 64;
const ABI_VERSION_MIN: usize = 13;
const ABI_VERSION_MAX: usize = tree_sitter::LANGUAGE_VERSION;
const ABI_VERSION_WITH_PRIMARY_STATES: usize = 14;
macro_rules! add {
($this: tt, $($arg: tt)*) => {{
$this.buffer.write_fmt(format_args!($($arg)*)).unwrap();
}}
}
macro_rules! add_whitespace {
($this: tt) => {{
for _ in 0..$this.indent_level {
write!(&mut $this.buffer, " ").unwrap();
}
}};
}
macro_rules! add_line {
($this: tt, $($arg: tt)*) => {
add_whitespace!($this);
$this.buffer.write_fmt(format_args!($($arg)*)).unwrap();
$this.buffer += "\n";
}
}
macro_rules! indent {
($this: tt) => {
$this.indent_level += 1;
};
}
macro_rules! dedent {
($this: tt) => {
assert_ne!($this.indent_level, 0);
$this.indent_level -= 1;
};
}
struct Generator {
buffer: String,
indent_level: usize,
language_name: String,
parse_table: ParseTable,
main_lex_table: LexTable,
keyword_lex_table: LexTable,
large_state_count: usize,
keyword_capture_token: Option<Symbol>,
syntax_grammar: SyntaxGrammar,
lexical_grammar: LexicalGrammar,
default_aliases: AliasMap,
symbol_order: HashMap<Symbol, usize>,
symbol_ids: HashMap<Symbol, String>,
alias_ids: HashMap<Alias, String>,
unique_aliases: Vec<Alias>,
symbol_map: HashMap<Symbol, Symbol>,
field_names: Vec<String>,
#[allow(unused)]
abi_version: usize,
}
struct TransitionSummary {
is_included: bool,
ranges: Vec<Range<char>>,
call_id: Option<usize>,
}
struct LargeCharacterSetInfo {
ranges: Vec<Range<char>>,
symbol: Symbol,
index: usize,
}
impl Generator {
fn generate(mut self) -> String {
self.init();
self.add_includes();
self.add_pragmas();
self.add_stats();
self.add_symbol_enum();
self.add_symbol_names_list();
self.add_unique_symbol_map();
self.add_symbol_metadata_list();
if !self.field_names.is_empty() {
self.add_field_name_enum();
self.add_field_name_names_list();
self.add_field_sequences();
}
if !self.parse_table.production_infos.is_empty() {
self.add_alias_sequences();
}
self.add_non_terminal_alias_map();
if self.abi_version >= ABI_VERSION_WITH_PRIMARY_STATES {
self.add_primary_state_id_list();
}
let mut main_lex_table = LexTable::default();
swap(&mut main_lex_table, &mut self.main_lex_table);
self.add_lex_function("ts_lex", main_lex_table, true);
if self.keyword_capture_token.is_some() {
let mut keyword_lex_table = LexTable::default();
swap(&mut keyword_lex_table, &mut self.keyword_lex_table);
self.add_lex_function("ts_lex_keywords", keyword_lex_table, false);
}
self.add_lex_modes_list();
if !self.syntax_grammar.external_tokens.is_empty() {
self.add_external_token_enum();
self.add_external_scanner_symbol_map();
self.add_external_scanner_states_list();
}
self.add_parse_table();
self.add_parser_export();
self.buffer
}
fn init(&mut self) {
let mut symbol_identifiers = HashSet::new();
for i in 0..self.parse_table.symbols.len() {
self.assign_symbol_id(self.parse_table.symbols[i], &mut symbol_identifiers);
}
self.symbol_ids.insert(
Symbol::end_of_nonterminal_extra(),
self.symbol_ids[&Symbol::end()].clone(),
);
self.symbol_map = self
.parse_table
.symbols
.iter()
.map(|symbol| {
let mut mapping = symbol;
// There can be multiple symbols in the grammar that have the same name and kind,
// due to simple aliases. When that happens, ensure that they map to the same
// public-facing symbol. If one of the symbols is not aliased, choose that one
// to be the public-facing symbol. Otherwise, pick the symbol with the lowest
// numeric value.
if let Some(alias) = self.default_aliases.get(symbol) {
let kind = alias.kind();
for other_symbol in &self.parse_table.symbols {
if let Some(other_alias) = self.default_aliases.get(other_symbol) {
if other_symbol < mapping && other_alias == alias {
mapping = other_symbol;
}
} else if self.metadata_for_symbol(*other_symbol) == (&alias.value, kind) {
mapping = other_symbol;
break;
}
}
}
// Two anonymous tokens with different flags but the same string value
// should be represented with the same symbol in the public API. Examples:
// * "<" and token(prec(1, "<"))
// * "(" and token.immediate("(")
else if symbol.is_terminal() {
let metadata = self.metadata_for_symbol(*symbol);
for other_symbol in &self.parse_table.symbols {
let other_metadata = self.metadata_for_symbol(*other_symbol);
if other_metadata == metadata {
mapping = other_symbol;
break;
}
}
}
(*symbol, *mapping)
})
.collect();
for production_info in &self.parse_table.production_infos {
// Build a list of all field names
for field_name in production_info.field_map.keys() {
if let Err(i) = self.field_names.binary_search(&field_name) {
self.field_names.insert(i, field_name.clone());
}
}
for alias in &production_info.alias_sequence {
// Generate a mapping from aliases to C identifiers.
if let Some(alias) = &alias {
let existing_symbol = self.parse_table.symbols.iter().cloned().find(|symbol| {
if let Some(default_alias) = self.default_aliases.get(symbol) {
default_alias == alias
} else {
let (name, kind) = self.metadata_for_symbol(*symbol);
name == alias.value && kind == alias.kind()
}
});
// Some aliases match an existing symbol in the grammar.
let alias_id;
if let Some(existing_symbol) = existing_symbol {
alias_id = self.symbol_ids[&self.symbol_map[&existing_symbol]].clone();
}
// Other aliases don't match any existing symbol, and need their own identifiers.
else {
if let Err(i) = self.unique_aliases.binary_search(alias) {
self.unique_aliases.insert(i, alias.clone());
}
alias_id = if alias.is_named {
format!("alias_sym_{}", self.sanitize_identifier(&alias.value))
} else {
format!("anon_alias_sym_{}", self.sanitize_identifier(&alias.value))
};
}
self.alias_ids.entry(alias.clone()).or_insert(alias_id);
}
}
}
// Determine which states should use the "small state" representation, and which should
// use the normal array representation.
let threshold = cmp::min(SMALL_STATE_THRESHOLD, self.parse_table.symbols.len() / 2);
self.large_state_count = self
.parse_table
.states
.iter()
.enumerate()
.take_while(|(i, s)| {
*i <= 1 || s.terminal_entries.len() + s.nonterminal_entries.len() > threshold
})
.count();
}
fn add_includes(&mut self) {
add_line!(self, "#include <tree_sitter/parser.h>");
add_line!(self, "");
}
fn add_pragmas(&mut self) {
add_line!(self, "#if defined(__GNUC__) || defined(__clang__)");
add_line!(self, "#pragma GCC diagnostic push");
add_line!(
self,
"#pragma GCC diagnostic ignored \"-Wmissing-field-initializers\""
);
add_line!(self, "#endif");
add_line!(self, "");
// Compiling large lexer functions can be very slow. Disabling optimizations
// is not ideal, but only a very small fraction of overall parse time is
// spent lexing, so the performance impact of this is negligible.
if self.main_lex_table.states.len() > 300 {
add_line!(self, "#ifdef _MSC_VER");
add_line!(self, "#pragma optimize(\"\", off)");
add_line!(self, "#elif defined(__clang__)");
add_line!(self, "#pragma clang optimize off");
add_line!(self, "#elif defined(__GNUC__)");
add_line!(self, "#pragma GCC optimize (\"O0\")");
add_line!(self, "#endif");
add_line!(self, "");
}
}
fn add_stats(&mut self) {
let token_count = self
.parse_table
.symbols
.iter()
.filter(|symbol| {
if symbol.is_terminal() || symbol.is_eof() {
true
} else if symbol.is_external() {
self.syntax_grammar.external_tokens[symbol.index]
.corresponding_internal_token
.is_none()
} else {
false
}
})
.count();
add_line!(self, "#define LANGUAGE_VERSION {}", self.abi_version);
add_line!(
self,
"#define STATE_COUNT {}",
self.parse_table.states.len()
);
add_line!(self, "#define LARGE_STATE_COUNT {}", self.large_state_count);
add_line!(
self,
"#define SYMBOL_COUNT {}",
self.parse_table.symbols.len()
);
add_line!(self, "#define ALIAS_COUNT {}", self.unique_aliases.len(),);
add_line!(self, "#define TOKEN_COUNT {}", token_count);
add_line!(
self,
"#define EXTERNAL_TOKEN_COUNT {}",
self.syntax_grammar.external_tokens.len()
);
add_line!(self, "#define FIELD_COUNT {}", self.field_names.len());
add_line!(
self,
"#define MAX_ALIAS_SEQUENCE_LENGTH {}",
self.parse_table.max_aliased_production_length
);
add_line!(
self,
"#define PRODUCTION_ID_COUNT {}",
self.parse_table.production_infos.len()
);
add_line!(self, "");
}
fn add_symbol_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
self.symbol_order.insert(Symbol::end(), 0);
let mut i = 1;
for symbol in self.parse_table.symbols.iter() {
if *symbol != Symbol::end() {
self.symbol_order.insert(*symbol, i);
add_line!(self, "{} = {},", self.symbol_ids[&symbol], i);
i += 1;
}
}
for alias in &self.unique_aliases {
add_line!(self, "{} = {},", self.alias_ids[&alias], i);
i += 1;
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_symbol_names_list(&mut self) {
add_line!(self, "static const char * const ts_symbol_names[] = {{");
indent!(self);
for symbol in self.parse_table.symbols.iter() {
let name = self.sanitize_string(
self.default_aliases
.get(symbol)
.map(|alias| alias.value.as_str())
.unwrap_or(self.metadata_for_symbol(*symbol).0),
);
add_line!(self, "[{}] = \"{}\",", self.symbol_ids[&symbol], name);
}
for alias in &self.unique_aliases {
add_line!(
self,
"[{}] = \"{}\",",
self.alias_ids[&alias],
self.sanitize_string(&alias.value)
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_unique_symbol_map(&mut self) {
add_line!(self, "static const TSSymbol ts_symbol_map[] = {{");
indent!(self);
for symbol in &self.parse_table.symbols {
add_line!(
self,
"[{}] = {},",
self.symbol_ids[symbol],
self.symbol_ids[&self.symbol_map[symbol]],
);
}
for alias in &self.unique_aliases {
add_line!(
self,
"[{}] = {},",
self.alias_ids[&alias],
self.alias_ids[&alias],
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_name_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
for (i, field_name) in self.field_names.iter().enumerate() {
add_line!(self, "{} = {},", self.field_id(field_name), i + 1);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_name_names_list(&mut self) {
add_line!(self, "static const char * const ts_field_names[] = {{");
indent!(self);
add_line!(self, "[0] = NULL,");
for field_name in &self.field_names {
add_line!(
self,
"[{}] = \"{}\",",
self.field_id(field_name),
field_name
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_symbol_metadata_list(&mut self) {
add_line!(
self,
"static const TSSymbolMetadata ts_symbol_metadata[] = {{"
);
indent!(self);
for symbol in &self.parse_table.symbols {
add_line!(self, "[{}] = {{", self.symbol_ids[&symbol]);
indent!(self);
if let Some(Alias { is_named, .. }) = self.default_aliases.get(symbol) {
add_line!(self, ".visible = true,");
add_line!(self, ".named = {},", is_named);
} else {
match self.metadata_for_symbol(*symbol).1 {
VariableType::Named => {
add_line!(self, ".visible = true,");
add_line!(self, ".named = true,");
}
VariableType::Anonymous => {
add_line!(self, ".visible = true,");
add_line!(self, ".named = false,");
}
VariableType::Hidden => {
add_line!(self, ".visible = false,");
add_line!(self, ".named = true,");
if self.syntax_grammar.supertype_symbols.contains(symbol) {
add_line!(self, ".supertype = true,");
}
}
VariableType::Auxiliary => {
add_line!(self, ".visible = false,");
add_line!(self, ".named = false,");
}
}
}
dedent!(self);
add_line!(self, "}},");
}
for alias in &self.unique_aliases {
add_line!(self, "[{}] = {{", self.alias_ids[&alias]);
indent!(self);
add_line!(self, ".visible = true,");
add_line!(self, ".named = {},", alias.is_named);
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_alias_sequences(&mut self) {
add_line!(
self,
"static const TSSymbol ts_alias_sequences[PRODUCTION_ID_COUNT][MAX_ALIAS_SEQUENCE_LENGTH] = {{",
);
indent!(self);
for (i, production_info) in self.parse_table.production_infos.iter().enumerate() {
if production_info.alias_sequence.is_empty() {
// Work around MSVC's intolerance of empty array initializers by
// explicitly zero-initializing the first element.
if i == 0 {
add_line!(self, "[0] = {{0}},");
}
continue;
}
add_line!(self, "[{}] = {{", i);
indent!(self);
for (j, alias) in production_info.alias_sequence.iter().enumerate() {
if let Some(alias) = alias {
add_line!(self, "[{}] = {},", j, self.alias_ids[&alias]);
}
}
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_non_terminal_alias_map(&mut self) {
let mut alias_ids_by_symbol = HashMap::new();
for variable in &self.syntax_grammar.variables {
for production in &variable.productions {
for step in &production.steps {
if let Some(alias) = &step.alias {
if step.symbol.is_non_terminal()
&& Some(alias) != self.default_aliases.get(&step.symbol)
{
if self.symbol_ids.contains_key(&step.symbol) {
if let Some(alias_id) = self.alias_ids.get(&alias) {
let alias_ids = alias_ids_by_symbol
.entry(step.symbol)
.or_insert(Vec::new());
if let Err(i) = alias_ids.binary_search(&alias_id) {
alias_ids.insert(i, alias_id);
}
}
}
}
}
}
}
}
let mut alias_ids_by_symbol = alias_ids_by_symbol.iter().collect::<Vec<_>>();
alias_ids_by_symbol.sort_unstable_by_key(|e| e.0);
add_line!(
self,
"static const uint16_t ts_non_terminal_alias_map[] = {{"
);
indent!(self);
for (symbol, alias_ids) in alias_ids_by_symbol {
let symbol_id = &self.symbol_ids[symbol];
let public_symbol_id = &self.symbol_ids[&self.symbol_map[&symbol]];
add_line!(self, "{}, {},", symbol_id, 1 + alias_ids.len());
indent!(self);
add_line!(self, "{},", public_symbol_id);
for alias_id in alias_ids {
add_line!(self, "{},", alias_id);
}
dedent!(self);
}
add_line!(self, "0,");
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
/// Produces a list of the "primary state" for every state in the grammar.
///
/// The "primary state" for a given state is the first encountered state that behaves
/// identically with respect to query analysis. We derive this by keeping track of the `core_id`
/// for each state and treating the first state with a given `core_id` as primary.
fn add_primary_state_id_list(&mut self) {
add_line!(
self,
"static const TSStateId ts_primary_state_ids[STATE_COUNT] = {{"
);
indent!(self);
let mut first_state_for_each_core_id = HashMap::new();
for (idx, state) in self.parse_table.states.iter().enumerate() {
let primary_state = first_state_for_each_core_id
.entry(state.core_id)
.or_insert(idx);
add_line!(self, "[{}] = {},", idx, primary_state);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_sequences(&mut self) {
let mut flat_field_maps = vec![];
let mut next_flat_field_map_index = 0;
self.get_field_map_id(
&Vec::new(),
&mut flat_field_maps,
&mut next_flat_field_map_index,
);
let mut field_map_ids = Vec::new();
for production_info in &self.parse_table.production_infos {
if !production_info.field_map.is_empty() {
let mut flat_field_map = Vec::new();
for (field_name, locations) in &production_info.field_map {
for location in locations {
flat_field_map.push((field_name.clone(), *location));
}
}
field_map_ids.push((
self.get_field_map_id(
&flat_field_map,
&mut flat_field_maps,
&mut next_flat_field_map_index,
),
flat_field_map.len(),
));
} else {
field_map_ids.push((0, 0));
}
}
add_line!(
self,
"static const TSFieldMapSlice ts_field_map_slices[PRODUCTION_ID_COUNT] = {{",
);
indent!(self);
for (production_id, (row_id, length)) in field_map_ids.into_iter().enumerate() {
if length > 0 {
add_line!(
self,
"[{}] = {{.index = {}, .length = {}}},",
production_id,
row_id,
length
);
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
add_line!(
self,
"static const TSFieldMapEntry ts_field_map_entries[] = {{",
);
indent!(self);
for (row_index, field_pairs) in flat_field_maps.into_iter().skip(1) {
add_line!(self, "[{}] =", row_index);
indent!(self);
for (field_name, location) in field_pairs {
add_whitespace!(self);
add!(self, "{{{}, {}", self.field_id(&field_name), location.index);
if location.inherited {
add!(self, ", .inherited = true");
}
add!(self, "}},\n");
}
dedent!(self);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_lex_function(
&mut self,
name: &str,
lex_table: LexTable,
extract_helper_functions: bool,
) {
let mut ruled_out_chars = HashSet::new();
let mut large_character_sets = Vec::<LargeCharacterSetInfo>::new();
// For each lex state, compute a summary of the code that needs to be
// generated.
let state_transition_summaries: Vec<Vec<TransitionSummary>> = lex_table
.states
.iter()
.map(|state| {
ruled_out_chars.clear();
// For each state transition, compute the set of character ranges
// that need to be checked.
state
.advance_actions
.iter()
.map(|(chars, action)| {
let is_included = !chars.contains(std::char::MAX);
let mut ranges;
if is_included {
ranges = chars.simplify_ignoring(&ruled_out_chars);
ruled_out_chars.extend(chars.iter());
} else {
ranges = chars.clone().negate().simplify_ignoring(&ruled_out_chars);
ranges.insert(0, '\0'..'\0')
}
// Record any large character sets so that they can be extracted
// into helper functions, reducing code duplication.
let mut call_id = None;
if extract_helper_functions && ranges.len() > LARGE_CHARACTER_RANGE_COUNT {
let char_set_symbol = self
.symbol_for_advance_action(action, &lex_table)
.expect("No symbol for lex state");
let mut count_for_symbol = 0;
for (i, info) in large_character_sets.iter_mut().enumerate() {
if info.ranges == ranges {
call_id = Some(i);
break;
}
if info.symbol == char_set_symbol {
count_for_symbol += 1;
}
}
if call_id.is_none() {
call_id = Some(large_character_sets.len());
large_character_sets.push(LargeCharacterSetInfo {
symbol: char_set_symbol,
index: count_for_symbol + 1,
ranges: ranges.clone(),
});
}
}
TransitionSummary {
is_included,
ranges,
call_id,
}
})
.collect()
})
.collect();
// Generate a helper function for each large character set.
let mut sorted_large_char_sets: Vec<_> = large_character_sets.iter().map(|e| e).collect();
sorted_large_char_sets.sort_unstable_by_key(|info| (info.symbol, info.index));
for info in sorted_large_char_sets {
add_line!(
self,
"static inline bool {}_character_set_{}(int32_t c) {{",
self.symbol_ids[&info.symbol],
info.index
);
indent!(self);
add_whitespace!(self);
add!(self, "return ");
let tree = CharacterTree::from_ranges(&info.ranges);
self.add_character_tree(tree.as_ref());
add!(self, ";\n");
dedent!(self);
add_line!(self, "}}");
add_line!(self, "");
}
add_line!(
self,
"static bool {}(TSLexer *lexer, TSStateId state) {{",
name
);
indent!(self);
add_line!(self, "START_LEXER();");
add_line!(self, "switch (state) {{");
indent!(self);
for (i, state) in lex_table.states.into_iter().enumerate() {
add_line!(self, "case {}:", i);
indent!(self);
self.add_lex_state(state, &state_transition_summaries[i], &large_character_sets);
dedent!(self);
}
add_line!(self, "default:");
indent!(self);
add_line!(self, "return false;");
dedent!(self);
dedent!(self);
add_line!(self, "}}");
dedent!(self);
add_line!(self, "}}");
add_line!(self, "");
}
fn symbol_for_advance_action(
&self,
action: &AdvanceAction,
lex_table: &LexTable,
) -> Option<Symbol> {
let mut state_ids = vec![action.state];
let mut i = 0;
while i < state_ids.len() {
let id = state_ids[i];
let state = &lex_table.states[id];
if let Some(accept) = state.accept_action {
return Some(accept);
}
for (_, action) in &state.advance_actions {
if !state_ids.contains(&action.state) {
state_ids.push(action.state);
}
}
i += 1;
}
return None;
}
fn add_lex_state(
&mut self,
state: LexState,
transition_info: &Vec<TransitionSummary>,
large_character_sets: &Vec<LargeCharacterSetInfo>,
) {
if let Some(accept_action) = state.accept_action {
add_line!(self, "ACCEPT_TOKEN({});", self.symbol_ids[&accept_action]);
}
if let Some(eof_action) = state.eof_action {
add_line!(self, "if (eof) ADVANCE({});", eof_action.state);
}
for (i, (_, action)) in state.advance_actions.into_iter().enumerate() {
let transition = &transition_info[i];
add_whitespace!(self);
// If there is a helper function for this transition's character
// set, then generate a call to that helper function.
if let Some(call_id) = transition.call_id {
let info = &large_character_sets[call_id];
add!(self, "if (");
if !transition.is_included {
add!(self, "!");
}
add!(
self,
"{}_character_set_{}(lookahead)) ",
self.symbol_ids[&info.symbol],
info.index
);
self.add_advance_action(&action);
add!(self, "\n");
continue;
}
// Otherwise, generate code to compare the lookahead character
// with all of the character ranges.
if transition.ranges.len() > 0 {
add!(self, "if (");
self.add_character_range_conditions(&transition.ranges, transition.is_included, 2);
add!(self, ") ");
}
self.add_advance_action(&action);
add!(self, "\n");
}
add_line!(self, "END_STATE();");
}
fn add_character_range_conditions(
&mut self,
ranges: &[Range<char>],
is_included: bool,
indent_count: usize,
) {
let mut line_break = "\n".to_string();
for _ in 0..self.indent_level + indent_count {
line_break.push_str(" ");
}
for (i, range) in ranges.iter().enumerate() {
if is_included {
if i > 0 {
add!(self, " ||{}", line_break);
}
if range.end == range.start {
if range.start == '\0' {
add!(self, "!eof && ");
}
add!(self, "lookahead == ");
self.add_character(range.start);
} else if range.end as u32 == range.start as u32 + 1 {
if range.start == '\0' {
add!(self, "!eof && ");
}
add!(self, "lookahead == ");
self.add_character(range.start);
add!(self, " ||{}lookahead == ", line_break);
self.add_character(range.end);
} else {
if range.start == '\0' {
add!(self, "!eof && ");
}
add!(self, "(");
self.add_character(range.start);
add!(self, " <= lookahead && lookahead <= ");
self.add_character(range.end);
add!(self, ")");
}
} else {
if i > 0 {
add!(self, " &&{}", line_break);
}
if range.end == range.start {
add!(self, "lookahead != ");
self.add_character(range.start);
} else if range.end as u32 == range.start as u32 + 1 {
add!(self, "lookahead != ");
self.add_character(range.start);
add!(self, " &&{}lookahead != ", line_break);
self.add_character(range.end);
} else {
if range.start != '\0' {
add!(self, "(lookahead < ");
self.add_character(range.start);
add!(self, " || ");
self.add_character(range.end);
add!(self, " < lookahead)");
} else {
add!(self, "lookahead > ");
self.add_character(range.end);
}
}
}
}
}
fn add_character_tree(&mut self, tree: Option<&CharacterTree>) {
match tree {
Some(CharacterTree::Compare {
value,
operator,
consequence,
alternative,
}) => {
let op = match operator {
Comparator::Less => "<",
Comparator::LessOrEqual => "<=",
Comparator::Equal => "==",
Comparator::GreaterOrEqual => ">=",
};
let consequence = consequence.as_ref().map(Box::as_ref);
let alternative = alternative.as_ref().map(Box::as_ref);
let simple = alternative.is_none() && consequence == Some(&CharacterTree::Yes);
if !simple {
add!(self, "(");
}
add!(self, "c {} ", op);
self.add_character(*value);
if !simple {
if alternative.is_none() {
add!(self, " && ");
self.add_character_tree(consequence);
} else if consequence == Some(&CharacterTree::Yes) {
add!(self, " || ");
self.add_character_tree(alternative);
} else {
add!(self, "\n");
indent!(self);
add_whitespace!(self);
add!(self, "? ");
self.add_character_tree(consequence);
add!(self, "\n");
add_whitespace!(self);
add!(self, ": ");
self.add_character_tree(alternative);
dedent!(self);
}
}
if !simple {
add!(self, ")");
}
}
Some(CharacterTree::Yes) => {
add!(self, "true");
}
None => {
add!(self, "false");
}
}
}
fn add_advance_action(&mut self, action: &AdvanceAction) {
if action.in_main_token {
add!(self, "ADVANCE({});", action.state);
} else {
add!(self, "SKIP({})", action.state);
}
}
fn add_lex_modes_list(&mut self) {
add_line!(
self,
"static const TSLexMode ts_lex_modes[STATE_COUNT] = {{"
);
indent!(self);
for (i, state) in self.parse_table.states.iter().enumerate() {
if state.is_end_of_non_terminal_extra() {
add_line!(self, "[{}] = {{(TSStateId)(-1)}},", i,);
} else if state.external_lex_state_id > 0 {
add_line!(
self,
"[{}] = {{.lex_state = {}, .external_lex_state = {}}},",
i,
state.lex_state_id,
state.external_lex_state_id
);
} else {
add_line!(self, "[{}] = {{.lex_state = {}}},", i, state.lex_state_id);
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_token_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
for i in 0..self.syntax_grammar.external_tokens.len() {
add_line!(
self,
"{} = {},",
self.external_token_id(&self.syntax_grammar.external_tokens[i]),
i
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_scanner_symbol_map(&mut self) {
add_line!(
self,
"static const TSSymbol ts_external_scanner_symbol_map[EXTERNAL_TOKEN_COUNT] = {{"
);
indent!(self);
for i in 0..self.syntax_grammar.external_tokens.len() {
let token = &self.syntax_grammar.external_tokens[i];
let id_token = token
.corresponding_internal_token
.unwrap_or(Symbol::external(i));
add_line!(
self,
"[{}] = {},",
self.external_token_id(&token),
self.symbol_ids[&id_token],
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_scanner_states_list(&mut self) {
add_line!(
self,
"static const bool ts_external_scanner_states[{}][EXTERNAL_TOKEN_COUNT] = {{",
self.parse_table.external_lex_states.len(),
);
indent!(self);
for i in 0..self.parse_table.external_lex_states.len() {
if !self.parse_table.external_lex_states[i].is_empty() {
add_line!(self, "[{}] = {{", i);
indent!(self);
for token in self.parse_table.external_lex_states[i].iter() {
add_line!(
self,
"[{}] = true,",
self.external_token_id(&self.syntax_grammar.external_tokens[token.index])
);
}
dedent!(self);
add_line!(self, "}},");
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_parse_table(&mut self) {
let mut parse_table_entries = HashMap::new();
let mut next_parse_action_list_index = 0;
self.get_parse_action_list_id(
&ParseTableEntry {
actions: Vec::new(),
reusable: false,
},
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
add_line!(
self,
"static const uint16_t ts_parse_table[LARGE_STATE_COUNT][SYMBOL_COUNT] = {{",
);
indent!(self);
let mut terminal_entries = Vec::new();
let mut nonterminal_entries = Vec::new();
for (i, state) in self
.parse_table
.states
.iter()
.enumerate()
.take(self.large_state_count)
{
add_line!(self, "[{}] = {{", i);
indent!(self);
// Ensure the entries are in a deterministic order, since they are
// internally represented as a hash map.
terminal_entries.clear();
nonterminal_entries.clear();
terminal_entries.extend(state.terminal_entries.iter());
nonterminal_entries.extend(state.nonterminal_entries.iter());
terminal_entries.sort_unstable_by_key(|e| self.symbol_order.get(e.0));
nonterminal_entries.sort_unstable_by_key(|k| k.0);
for (symbol, action) in &nonterminal_entries {
add_line!(
self,
"[{}] = STATE({}),",
self.symbol_ids[symbol],
match action {
GotoAction::Goto(state) => *state,
GotoAction::ShiftExtra => i,
}
);
}
for (symbol, entry) in &terminal_entries {
let entry_id = self.get_parse_action_list_id(
entry,
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
add_line!(
self,
"[{}] = ACTIONS({}),",
self.symbol_ids[symbol],
entry_id
);
}
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
if self.large_state_count < self.parse_table.states.len() {
add_line!(self, "static const uint16_t ts_small_parse_table[] = {{");
indent!(self);
let mut index = 0;
let mut small_state_indices = Vec::new();
let mut symbols_by_value: HashMap<(usize, SymbolType), Vec<Symbol>> = HashMap::new();
for state in self.parse_table.states.iter().skip(self.large_state_count) {
small_state_indices.push(index);
symbols_by_value.clear();
terminal_entries.clear();
terminal_entries.extend(state.terminal_entries.iter());
terminal_entries.sort_unstable_by_key(|e| self.symbol_order.get(e.0));
// In a given parse state, many lookahead symbols have the same actions.
// So in the "small state" representation, group symbols by their action
// in order to avoid repeating the action.
for (symbol, entry) in &terminal_entries {
let entry_id = self.get_parse_action_list_id(
entry,
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
symbols_by_value
.entry((entry_id, SymbolType::Terminal))
.or_default()
.push(**symbol);
}
for (symbol, action) in &state.nonterminal_entries {
let state_id = match action {
GotoAction::Goto(i) => *i,
GotoAction::ShiftExtra => {
self.large_state_count + small_state_indices.len() - 1
}
};
symbols_by_value
.entry((state_id, SymbolType::NonTerminal))
.or_default()
.push(*symbol);
}
let mut values_with_symbols = symbols_by_value.drain().collect::<Vec<_>>();
values_with_symbols.sort_unstable_by_key(|((value, kind), symbols)| {
(symbols.len(), *kind, *value, symbols[0])
});
add_line!(self, "[{}] = {},", index, values_with_symbols.len());
indent!(self);
for ((value, kind), symbols) in values_with_symbols.iter_mut() {
if *kind == SymbolType::NonTerminal {
add_line!(self, "STATE({}), {},", value, symbols.len());
} else {
add_line!(self, "ACTIONS({}), {},", value, symbols.len());
}
symbols.sort_unstable();
indent!(self);
for symbol in symbols {
add_line!(self, "{},", self.symbol_ids[symbol]);
}
dedent!(self);
}
dedent!(self);
index += 1 + values_with_symbols
.iter()
.map(|(_, symbols)| 2 + symbols.len())
.sum::<usize>();
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
add_line!(
self,
"static const uint32_t ts_small_parse_table_map[] = {{"
);
indent!(self);
for i in self.large_state_count..self.parse_table.states.len() {
add_line!(
self,
"[SMALL_STATE({})] = {},",
i,
small_state_indices[i - self.large_state_count]
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
let mut parse_table_entries: Vec<_> = parse_table_entries
.into_iter()
.map(|(entry, i)| (i, entry))
.collect();
parse_table_entries.sort_by_key(|(index, _)| *index);
self.add_parse_action_list(parse_table_entries);
}
fn add_parse_action_list(&mut self, parse_table_entries: Vec<(usize, ParseTableEntry)>) {
add_line!(
self,
"static const TSParseActionEntry ts_parse_actions[] = {{"
);
indent!(self);
for (i, entry) in parse_table_entries {
add!(
self,
" [{}] = {{.entry = {{.count = {}, .reusable = {}}}}},",
i,
entry.actions.len(),
entry.reusable
);
for action in entry.actions {
add!(self, " ");
match action {
ParseAction::Accept => add!(self, " ACCEPT_INPUT()"),
ParseAction::Recover => add!(self, "RECOVER()"),
ParseAction::ShiftExtra => add!(self, "SHIFT_EXTRA()"),
ParseAction::Shift {
state,
is_repetition,
} => {
if is_repetition {
add!(self, "SHIFT_REPEAT({})", state);
} else {
add!(self, "SHIFT({})", state);
}
}
ParseAction::Reduce {
symbol,
child_count,
dynamic_precedence,
production_id,
..
} => {
add!(self, "REDUCE({}, {}", self.symbol_ids[&symbol], child_count);
if dynamic_precedence != 0 {
add!(self, ", .dynamic_precedence = {}", dynamic_precedence);
}
if production_id != 0 {
add!(self, ", .production_id = {}", production_id);
}
add!(self, ")");
}
}
add!(self, ",")
}
add!(self, "\n");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_parser_export(&mut self) {
let language_function_name = format!("tree_sitter_{}", self.language_name);
let external_scanner_name = format!("{}_external_scanner", language_function_name);
add_line!(self, "#ifdef __cplusplus");
add_line!(self, r#"extern "C" {{"#);
add_line!(self, "#endif");
if !self.syntax_grammar.external_tokens.is_empty() {
add_line!(self, "void *{}_create(void);", external_scanner_name);
add_line!(self, "void {}_destroy(void *);", external_scanner_name);
add_line!(
self,
"bool {}_scan(void *, TSLexer *, const bool *);",
external_scanner_name
);
add_line!(
self,
"unsigned {}_serialize(void *, char *);",
external_scanner_name
);
add_line!(
self,
"void {}_deserialize(void *, const char *, unsigned);",
external_scanner_name
);
add_line!(self, "");
}
add_line!(self, "#ifdef _WIN32");
add_line!(self, "#define extern __declspec(dllexport)");
add_line!(self, "#endif");
add_line!(self, "");
add_line!(
self,
"extern const TSLanguage *{}(void) {{",
language_function_name
);
indent!(self);
add_line!(self, "static const TSLanguage language = {{");
indent!(self);
add_line!(self, ".version = LANGUAGE_VERSION,");
// Quantities
add_line!(self, ".symbol_count = SYMBOL_COUNT,");
add_line!(self, ".alias_count = ALIAS_COUNT,");
add_line!(self, ".token_count = TOKEN_COUNT,");
add_line!(self, ".external_token_count = EXTERNAL_TOKEN_COUNT,");
add_line!(self, ".state_count = STATE_COUNT,");
add_line!(self, ".large_state_count = LARGE_STATE_COUNT,");
add_line!(self, ".production_id_count = PRODUCTION_ID_COUNT,");
add_line!(self, ".field_count = FIELD_COUNT,");
add_line!(
self,
".max_alias_sequence_length = MAX_ALIAS_SEQUENCE_LENGTH,"
);
// Parse table
add_line!(self, ".parse_table = &ts_parse_table[0][0],");
if self.large_state_count < self.parse_table.states.len() {
add_line!(self, ".small_parse_table = ts_small_parse_table,");
add_line!(self, ".small_parse_table_map = ts_small_parse_table_map,");
}
add_line!(self, ".parse_actions = ts_parse_actions,");
// Metadata
add_line!(self, ".symbol_names = ts_symbol_names,");
if !self.field_names.is_empty() {
add_line!(self, ".field_names = ts_field_names,");
add_line!(self, ".field_map_slices = ts_field_map_slices,");
add_line!(self, ".field_map_entries = ts_field_map_entries,");
}
add_line!(self, ".symbol_metadata = ts_symbol_metadata,");
add_line!(self, ".public_symbol_map = ts_symbol_map,");
add_line!(self, ".alias_map = ts_non_terminal_alias_map,");
if !self.parse_table.production_infos.is_empty() {
add_line!(self, ".alias_sequences = &ts_alias_sequences[0][0],");
}
// Lexing
add_line!(self, ".lex_modes = ts_lex_modes,");
add_line!(self, ".lex_fn = ts_lex,");
if let Some(keyword_capture_token) = self.keyword_capture_token {
add_line!(self, ".keyword_lex_fn = ts_lex_keywords,");
add_line!(
self,
".keyword_capture_token = {},",
self.symbol_ids[&keyword_capture_token]
);
}
if !self.syntax_grammar.external_tokens.is_empty() {
add_line!(self, ".external_scanner = {{");
indent!(self);
add_line!(self, "&ts_external_scanner_states[0][0],");
add_line!(self, "ts_external_scanner_symbol_map,");
add_line!(self, "{}_create,", external_scanner_name);
add_line!(self, "{}_destroy,", external_scanner_name);
add_line!(self, "{}_scan,", external_scanner_name);
add_line!(self, "{}_serialize,", external_scanner_name);
add_line!(self, "{}_deserialize,", external_scanner_name);
dedent!(self);
add_line!(self, "}},");
}
if self.abi_version >= ABI_VERSION_WITH_PRIMARY_STATES {
add_line!(self, ".primary_state_ids = ts_primary_state_ids,");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "return &language;");
dedent!(self);
add_line!(self, "}}");
add_line!(self, "#ifdef __cplusplus");
add_line!(self, "}}");
add_line!(self, "#endif");
}
fn get_parse_action_list_id(
&self,
entry: &ParseTableEntry,
parse_table_entries: &mut HashMap<ParseTableEntry, usize>,
next_parse_action_list_index: &mut usize,
) -> usize {
if let Some(&index) = parse_table_entries.get(entry) {
index
} else {
let result = *next_parse_action_list_index;
parse_table_entries.insert(entry.clone(), result);
*next_parse_action_list_index += 1 + entry.actions.len();
result
}
}
fn get_field_map_id(
&self,
flat_field_map: &Vec<(String, FieldLocation)>,
flat_field_maps: &mut Vec<(usize, Vec<(String, FieldLocation)>)>,
next_flat_field_map_index: &mut usize,
) -> usize {
if let Some((index, _)) = flat_field_maps.iter().find(|(_, e)| *e == *flat_field_map) {
return *index;
}
let result = *next_flat_field_map_index;
flat_field_maps.push((result, flat_field_map.clone()));
*next_flat_field_map_index += flat_field_map.len();
result
}
fn external_token_id(&self, token: &ExternalToken) -> String {
format!(
"ts_external_token_{}",
self.sanitize_identifier(&token.name)
)
}
fn assign_symbol_id(&mut self, symbol: Symbol, used_identifiers: &mut HashSet<String>) {
let mut id;
if symbol == Symbol::end() {
id = "ts_builtin_sym_end".to_string();
} else {
let (name, kind) = self.metadata_for_symbol(symbol);
id = match kind {
VariableType::Auxiliary => format!("aux_sym_{}", self.sanitize_identifier(name)),
VariableType::Anonymous => format!("anon_sym_{}", self.sanitize_identifier(name)),
VariableType::Hidden | VariableType::Named => {
format!("sym_{}", self.sanitize_identifier(name))
}
};
let mut suffix_number = 1;
let mut suffix = String::new();
while used_identifiers.contains(&id) {
id.drain(id.len() - suffix.len()..);
suffix_number += 1;
suffix = suffix_number.to_string();
id += &suffix;
}
}
used_identifiers.insert(id.clone());
self.symbol_ids.insert(symbol, id);
}
fn field_id(&self, field_name: &String) -> String {
format!("field_{}", field_name)
}
fn metadata_for_symbol(&self, symbol: Symbol) -> (&str, VariableType) {
match symbol.kind {
SymbolType::End | SymbolType::EndOfNonTerminalExtra => ("end", VariableType::Hidden),
SymbolType::NonTerminal => {
let variable = &self.syntax_grammar.variables[symbol.index];
(&variable.name, variable.kind)
}
SymbolType::Terminal => {
let variable = &self.lexical_grammar.variables[symbol.index];
(&variable.name, variable.kind)
}
SymbolType::External => {
let token = &self.syntax_grammar.external_tokens[symbol.index];
(&token.name, token.kind)
}
}
}
fn sanitize_identifier(&self, name: &str) -> String {
let mut result = String::with_capacity(name.len());
for c in name.chars() {
if c.is_ascii_alphanumeric() || c == '_' {
result.push(c);
} else {
'special_chars: {
let replacement = match c {
' ' if name.len() == 1 => "SPACE",
'~' => "TILDE",
'`' => "BQUOTE",
'!' => "BANG",
'@' => "AT",
'#' => "POUND",
'$' => "DOLLAR",
'%' => "PERCENT",
'^' => "CARET",
'&' => "AMP",
'*' => "STAR",
'(' => "LPAREN",
')' => "RPAREN",
'-' => "DASH",
'+' => "PLUS",
'=' => "EQ",
'{' => "LBRACE",
'}' => "RBRACE",
'[' => "LBRACK",
']' => "RBRACK",
'\\' => "BSLASH",
'|' => "PIPE",
':' => "COLON",
';' => "SEMI",
'"' => "DQUOTE",
'\'' => "SQUOTE",
'<' => "LT",
'>' => "GT",
',' => "COMMA",
'.' => "DOT",
'?' => "QMARK",
'/' => "SLASH",
'\n' => "LF",
'\r' => "CR",
'\t' => "TAB",
'\0' => "NULL",
'\u{0001}' => "SOH",
'\u{0002}' => "STX",
'\u{0003}' => "ETX",
'\u{0004}' => "EOT",
'\u{0005}' => "ENQ",
'\u{0006}' => "ACK",
'\u{0007}' => "BEL",
'\u{0008}' => "BS",
'\u{000b}' => "VTAB",
'\u{000c}' => "FF",
'\u{000e}' => "SO",
'\u{000f}' => "SI",
'\u{0010}' => "DLE",
'\u{0011}' => "DC1",
'\u{0012}' => "DC2",
'\u{0013}' => "DC3",
'\u{0014}' => "DC4",
'\u{0015}' => "NAK",
'\u{0016}' => "SYN",
'\u{0017}' => "ETB",
'\u{0018}' => "CAN",
'\u{0019}' => "EM",
'\u{001a}' => "SUB",
'\u{001b}' => "ESC",
'\u{001c}' => "FS",
'\u{001d}' => "GS",
'\u{001e}' => "RS",
'\u{001f}' => "US",
'\u{007F}' => "DEL",
'\u{FEFF}' => "BOM",
'\u{0080}'..='\u{FFFF}' => {
result.push_str(&format!("u{:04x}", c as u32));
break 'special_chars;
}
'\u{10000}'..='\u{10FFFF}' => {
result.push_str(&format!("U{:08x}", c as u32));
break 'special_chars;
}
'0'..='9' | 'a'..='z' | 'A'..='Z' | '_' => unreachable!(),
' ' => break 'special_chars,
};
if !result.is_empty() && !result.ends_with("_") {
result.push('_');
}
result += replacement;
}
}
}
result
}
fn sanitize_string(&self, name: &str) -> String {
let mut result = String::with_capacity(name.len());
for c in name.chars() {
match c {
'\"' => result += "\\\"",
'?' => result += "\\?",
'\\' => result += "\\\\",
'\u{0007}' => result += "\\a",
'\u{0008}' => result += "\\b",
'\u{000b}' => result += "\\v",
'\u{000c}' => result += "\\f",
'\n' => result += "\\n",
'\r' => result += "\\r",
'\t' => result += "\\t",
'\0' => result += "\\0",
'\u{0001}'..='\u{001f}' => result += &format!("\\x{:02x}", c as u32),
'\u{007F}'..='\u{FFFF}' => result += &format!("\\u{:04x}", c as u32),
'\u{10000}'..='\u{10FFFF}' => {
result.push_str(&format!("\\U{:08x}", c as u32));
}
_ => result.push(c),
}
}
result
}
fn add_character(&mut self, c: char) {
match c {
'\'' => add!(self, "'\\''"),
'\\' => add!(self, "'\\\\'"),
'\u{000c}' => add!(self, "'\\f'"),
'\n' => add!(self, "'\\n'"),
'\t' => add!(self, "'\\t'"),
'\r' => add!(self, "'\\r'"),
_ => {
if c == ' ' || c.is_ascii_graphic() {
add!(self, "'{}'", c)
} else {
add!(self, "{}", c as u32)
}
}
}
}
}
/// Returns a String of C code for the given components of a parser.
///
/// # Arguments
///
/// * `name` - A string slice containing the name of the language
/// * `parse_table` - The generated parse table for the language
/// * `main_lex_table` - The generated lexing table for the language
/// * `keyword_lex_table` - The generated keyword lexing table for the language
/// * `keyword_capture_token` - A symbol indicating which token is used
/// for keyword capture, if any.
/// * `syntax_grammar` - The syntax grammar extracted from the language's grammar
/// * `lexical_grammar` - The lexical grammar extracted from the language's grammar
/// * `default_aliases` - A map describing the global rename rules that should apply.
/// the keys are symbols that are *always* aliased in the same way, and the values
/// are the aliases that are applied to those symbols.
/// * `abi_version` - The language ABI version that should be generated. Usually
/// you want Tree-sitter's current version, but right after making an ABI
/// change, it may be useful to generate code with the previous ABI.
pub(crate) fn render_c_code(
name: &str,
parse_table: ParseTable,
main_lex_table: LexTable,
keyword_lex_table: LexTable,
keyword_capture_token: Option<Symbol>,
syntax_grammar: SyntaxGrammar,
lexical_grammar: LexicalGrammar,
default_aliases: AliasMap,
abi_version: usize,
) -> String {
if !(ABI_VERSION_MIN..=ABI_VERSION_MAX).contains(&abi_version) {
panic!(
"This version of Tree-sitter can only generate parsers with ABI version {} - {}, not {}",
ABI_VERSION_MIN, ABI_VERSION_MAX, abi_version
);
}
Generator {
buffer: String::new(),
indent_level: 0,
language_name: name.to_string(),
large_state_count: 0,
parse_table,
main_lex_table,
keyword_lex_table,
keyword_capture_token,
syntax_grammar,
lexical_grammar,
default_aliases,
symbol_ids: HashMap::new(),
symbol_order: HashMap::new(),
alias_ids: HashMap::new(),
symbol_map: HashMap::new(),
unique_aliases: Vec::new(),
field_names: Vec::new(),
abi_version,
}
.generate()
}