tree-sitter/spec/runtime/stack_spec.cc
Max Brunsfeld e7d3d40a59 Explicitly inform stack pop callback when the stack is exhausted
Also, pass non-extra tree count as a single value, rather than keeping
track of the extra count and the total separately.
2016-03-10 11:51:55 -08:00

603 lines
23 KiB
C++

#include "spec_helper.h"
#include "helpers/tree_helpers.h"
#include "helpers/record_alloc.h"
#include "helpers/stream_methods.h"
#include "runtime/stack.h"
#include "runtime/tree.h"
#include "runtime/length.h"
#include "runtime/alloc.h"
enum {
stateA = 1,
stateB,
stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
};
enum {
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
symbol9, symbol10
};
struct TreeSelectionSpy {
int call_count;
TSTree *tree_to_return;
const TSTree *arguments[2];
};
TSLength operator*(const TSLength &length, size_t factor) {
return {length.bytes * factor, length.chars * factor, 0, length.columns * factor};
}
extern "C"
int tree_selection_spy_callback(void *data, TSTree *left, TSTree *right) {
TreeSelectionSpy *spy = (TreeSelectionSpy *)data;
spy->call_count++;
spy->arguments[0] = left;
spy->arguments[1] = right;
if (spy->tree_to_return == left)
return -1;
else
return 1;
}
void free_slice_array(StackSliceArray *slices) {
for (size_t i = 0; i < slices->size; i++) {
StackSlice slice = slices->contents[i];
bool matches_prior_trees = false;
for (size_t j = 0; j < i; j++) {
StackSlice prior_slice = slices->contents[j];
if (slice.trees.contents == prior_slice.trees.contents) {
matches_prior_trees = true;
break;
}
}
if (!matches_prior_trees) {
for (size_t j = 0; j < slice.trees.size; j++)
ts_tree_release(slice.trees.contents[j]);
array_delete(&slice.trees);
}
}
}
struct StackEntry {
TSStateId state;
size_t depth;
};
vector<StackEntry> get_stack_entries(Stack *stack, int head_index) {
vector<StackEntry> result;
ts_stack_pop_until(
stack,
head_index,
[](void *payload, TSStateId state, size_t tree_count, bool is_done) {
auto entries = static_cast<vector<StackEntry> *>(payload);
StackEntry entry = {state, tree_count};
if (find(entries->begin(), entries->end(), entry) == entries->end())
entries->push_back(entry);
return StackIterateContinue;
}, &result);
return result;
}
START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t tree_count = 11;
TSTree *trees[tree_count];
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
TSLength tree_len = {2, 3, 0, 3};
TSSymbolMetadata metadata = {true, true, true, true};
before_each([&]() {
record_alloc::start();
stack = ts_stack_new();
ts_stack_set_tree_selection_callback(stack,
&tree_selection_spy,
tree_selection_spy_callback
);
for (size_t i = 0; i < tree_count; i++)
trees[i] = ts_tree_make_leaf(i, ts_length_zero(), tree_len, {
true, true, false, true,
});
});
after_each([&]() {
ts_stack_delete(stack);
for (size_t i = 0; i < tree_count; i++)
ts_tree_release(trees[i]);
record_alloc::stop();
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
});
describe("pushing entries to the stack", [&]() {
it("adds entries to the stack", [&]() {
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
AssertThat(ts_stack_top_position(stack, 0), Equals(ts_length_zero()));
// . <──0── A*
ts_stack_push(stack, 0, trees[0], stateA);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateA));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len));
// . <──0── A <──1── B*
ts_stack_push(stack, 0, trees[1], stateB);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[2], stateC);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
});
});
describe("popping nodes from the stack", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], stateA);
ts_stack_push(stack, 0, trees[1], stateB);
ts_stack_push(stack, 0, trees[2], stateC);
});
it("removes the given number of nodes from the stack", [&]() {
// . <──0── A*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateA));
free_slice_array(&pop_result.slices);
// .*
pop_result = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
free_slice_array(&pop_result.slices);
});
it("does not count 'extra' trees toward the count", [&]() {
trees[1]->extra = true;
// .*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 0), Equals(0));
free_slice_array(&pop_result.slices);
});
it("pops the entire stack when given a negative count", [&]() {
// .*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, -1);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
free_slice_array(&pop_result.slices);
});
describe("when an error state exists above the given depth", [&]() {
it("stops popping nodes at the error", [&]() {
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
ts_stack_push(stack, 0, trees[3], ts_parse_state_error);
ts_stack_push(stack, 0, trees[4], stateD);
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop_result.status, Equals(StackPopResult::StackPopStoppedAtError));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(ts_parse_state_error));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.head_index, Equals(0));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[4] })));
free_slice_array(&pop_result.slices);
});
});
});
describe("splitting the stack", [&]() {
it("creates a new independent head with the same entries", [&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], stateA);
ts_stack_push(stack, 0, trees[1], stateB);
ts_stack_push(stack, 0, trees[2], stateC);
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
int new_index = ts_stack_split(stack, 0);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(new_index, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └─*
ts_stack_push(stack, 0, trees[3], stateD);
StackPopResult pop_result = ts_stack_pop_count(stack, 1, 1);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateD));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 4));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 1), Equals(tree_len * 2));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice = pop_result.slices.contents[0];
AssertThat(slice.trees.size, Equals<size_t>(1));
free_slice_array(&pop_result.slices);
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └───4─── E <──5── F*
ts_stack_push(stack, 1, trees[4], stateE);
ts_stack_push(stack, 1, trees[5], stateF);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateD));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 4));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(ts_stack_top_position(stack, 1), Equals(tree_len * 4));
});
});
describe("pushing the same state onto two different heads of the stack", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D*
// ↑
// └───4─── E <──5── F*
ts_stack_push(stack, 0, trees[0], stateA);
ts_stack_push(stack, 0, trees[1], stateB);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, trees[2], stateC);
ts_stack_push(stack, 0, trees[3], stateD);
ts_stack_push(stack, 1, trees[4], stateE);
ts_stack_push(stack, 1, trees[5], stateF);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateC, 1},
{stateB, 2},
{stateA, 3},
{0, 4},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateF, 0},
{stateE, 1},
{stateB, 2},
{stateA, 3},
{0, 4},
})));
});
it("merges the heads", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──6── G*
// ↑ |
// └───4─── E <──5── F <──7───┘
AssertThat(ts_stack_push(stack, 0, trees[6], stateG), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[7], stateG), Equals(StackPushMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateG, 0},
{stateD, 1},
{stateF, 1},
{stateC, 2},
{stateE, 2},
{stateB, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when the merged nodes share a successor", [&]() {
it("recursively merges the successor nodes", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
// ↑
// └───4─── E <──5── F <──8── G*
AssertThat(ts_stack_push(stack, 0, trees[6], stateG), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 0, trees[7], stateH), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[6], stateG), Equals(StackPushContinued));
// . <──0── A <──1── B <──2── C <──3── D <──6── G <──7──H*
// ↑ |
// └───4─── E <──5── F <──8───┘
AssertThat(ts_stack_push(stack, 1, trees[7], stateH), Equals(StackPushMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateH, 0},
{stateG, 1},
{stateD, 2},
{stateF, 2},
{stateC, 3},
{stateE, 3},
{stateB, 4},
{stateA, 5},
{0, 6},
})));
});
});
describe("when the first head is only one node deep", [&]() {
it("creates a node with one null successor and one non-null successor", [&]() {
ts_tree_retain(trees[2]);
ts_tree_retain(trees[3]);
TSTree *parent = ts_tree_make_node(5, 2, tree_array({ trees[2], trees[3] }), metadata);
// . <──────5─────── C*
// ↑ |
// └───2─── B ───3───┘
ts_stack_clear(stack);
ts_stack_split(stack, 0);
AssertThat(ts_stack_push(stack, 0, parent, stateC), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[2], stateB), Equals(StackPushContinued));
AssertThat(ts_stack_push(stack, 1, trees[3], stateC), Equals(StackPushMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{0, 1},
{stateB, 1},
{0, 2},
})));
ts_tree_release(parent);
});
});
});
describe("popping from a stack head that has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
// ↑ |
// └───5─── F <──6── G <──7───┘
ts_stack_push(stack, 0, trees[0], stateA);
ts_stack_push(stack, 0, trees[1], stateB);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, trees[2], stateC);
ts_stack_push(stack, 0, trees[3], stateD);
ts_stack_push(stack, 0, trees[4], stateE);
ts_stack_push(stack, 1, trees[5], stateF);
ts_stack_push(stack, 1, trees[6], stateG);
ts_stack_push(stack, 1, trees[7], stateE);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateE, 0},
{stateD, 1},
{stateG, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when there are two paths that lead to two different heads", [&]() {
it("returns an entry for each revealed head", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └───5─── F*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop_result.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.head_index, Equals(0));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[4] })));
StackSlice slice2 = pop_result.slices.contents[1];
AssertThat(slice2.head_index, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateF, 0},
{stateB, 1},
{stateA, 2},
{0, 3},
})));
free_slice_array(&pop_result.slices);
});
});
describe("when there is one path, leading to one head", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──4── E <──8──H*
// ↑ |
// └───5─── F <──6── G <──7───┘
AssertThat(ts_stack_push(stack, 0, trees[8], stateH), Equals(StackPushContinued));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateH));
// . <──0── A <──1── B <──2── C <──3── D <──4── E*
// ↑ |
// └───5─── F <──6── G <──7───┘
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.head_index, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[8] })));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
free_slice_array(&pop_result.slices);
});
});
describe("when there are two paths that converge at the same head", [&]() {
describe("when the first path is preferred by the callback", [&]() {
it("returns one entry for that head, with the first path of trees", [&]() {
tree_selection_spy.tree_to_return = trees[2];
// . <──0── A <──1── B*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.head_index, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[4] })));
free_slice_array(&pop_result.slices);
});
});
describe("when the second path is preferred by the callback", [&]() {
it("returns one entry for that head, with the second path of trees", [&]() {
tree_selection_spy.tree_to_return = trees[4];
// . <──0── A <──1── B*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 3);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
AssertThat(pop_result.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(slice1.head_index, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[7] })))
free_slice_array(&pop_result.slices);
});
});
});
});
describe("popping from a stack head that has been 3-way merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I
// ↑ |
// ├───4─── E <──5── F <──6───┤
// | |
// └───7─── G <──8── H <──9───┘
ts_stack_clear(stack);
ts_stack_push(stack, 0, trees[0], stateA);
ts_stack_split(stack, 0);
ts_stack_split(stack, 1);
ts_stack_push(stack, 0, trees[1], stateB);
ts_stack_push(stack, 0, trees[2], stateC);
ts_stack_push(stack, 0, trees[3], stateD);
ts_stack_push(stack, 1, trees[4], stateE);
ts_stack_push(stack, 1, trees[5], stateF);
ts_stack_push(stack, 1, trees[6], stateD);
ts_stack_push(stack, 1, trees[7], stateG);
ts_stack_push(stack, 1, trees[8], stateH);
ts_stack_push(stack, 1, trees[9], stateD);
ts_stack_push(stack, 0, trees[10], stateI);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{0, 5},
})));
});
describe("when there are three different paths that lead to three different heads", [&]() {
it("returns three entries with different arrays of trees", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
StackPopResult pop_result = ts_stack_pop_count(stack, 0, 2);
AssertThat(ts_stack_head_count(stack), Equals(3));
AssertThat(pop_result.slices.size, Equals<size_t>(3));
StackSlice slice1 = pop_result.slices.contents[0];
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(slice1.head_index, Equals(0));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
StackSlice slice2 = pop_result.slices.contents[1];
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(slice2.head_index, Equals(1));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
StackSlice slice3 = pop_result.slices.contents[2];
AssertThat(ts_stack_top_state(stack, 2), Equals(stateH));
AssertThat(slice3.head_index, Equals(2));
AssertThat(slice3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
free_slice_array(&pop_result.slices);
});
});
});
});
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && left.depth == right.depth;
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.depth << "}";
}
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
stream << "[";
bool first = true;
for (size_t i = 0; i < array.size; i++) {
if (!first)
stream << ", ";
first = false;
stream << array.contents[i];
}
return stream << "]";
}