tree-sitter/spec/runtime/stack_spec.cc
2016-10-16 21:10:25 -07:00

546 lines
20 KiB
C++

#include "spec_helper.h"
#include "helpers/tree_helpers.h"
#include "helpers/point_helpers.h"
#include "helpers/record_alloc.h"
#include "helpers/stream_methods.h"
#include "runtime/stack.h"
#include "runtime/tree.h"
#include "runtime/length.h"
#include "runtime/alloc.h"
enum {
stateA = 2,
stateB,
stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
};
enum {
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
symbol9, symbol10
};
TSLength operator*(const TSLength &length, size_t factor) {
return {length.bytes * factor, length.chars * factor, {0, length.extent.column * factor}};
}
void free_slice_array(StackSliceArray *slices) {
for (size_t i = 0; i < slices->size; i++) {
StackSlice slice = slices->contents[i];
bool matches_prior_trees = false;
for (size_t j = 0; j < i; j++) {
StackSlice prior_slice = slices->contents[j];
if (slice.trees.contents == prior_slice.trees.contents) {
matches_prior_trees = true;
break;
}
}
if (!matches_prior_trees) {
for (size_t j = 0; j < slice.trees.size; j++)
ts_tree_release(slice.trees.contents[j]);
array_delete(&slice.trees);
}
}
}
struct StackEntry {
TSStateId state;
size_t depth;
};
vector<StackEntry> get_stack_entries(Stack *stack, StackVersion version) {
vector<StackEntry> result;
ts_stack_iterate(
stack,
version,
[](void *payload, TSStateId state, TreeArray *trees, size_t tree_count, bool is_done, bool is_pending) -> StackIterateAction {
auto entries = static_cast<vector<StackEntry> *>(payload);
StackEntry entry = {state, tree_count};
if (find(entries->begin(), entries->end(), entry) == entries->end())
entries->push_back(entry);
return StackIterateNone;
}, &result);
return result;
}
START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t tree_count = 11;
TSTree *trees[tree_count];
TSLength tree_len = {2, 3, {0, 3}};
before_each([&]() {
record_alloc::start();
stack = ts_stack_new();
for (size_t i = 0; i < tree_count; i++)
trees[i] = ts_tree_make_leaf(i, ts_length_zero(), tree_len, {
true, true, false, true,
});
});
after_each([&]() {
ts_stack_delete(stack);
for (size_t i = 0; i < tree_count; i++)
ts_tree_release(trees[i]);
record_alloc::stop();
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
});
describe("push(version, tree, is_pending, state)", [&]() {
it("adds entries to the given version of the stack", [&]() {
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(1));
AssertThat(ts_stack_top_position(stack, 0), Equals(ts_length_zero()));
// . <──0── A*
ts_stack_push(stack, 0, trees[0], false, stateA);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateA));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len));
// . <──0── A <──1── B*
ts_stack_push(stack, 0, trees[1], false, stateB);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateB));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 2));
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[2], false, stateC);
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(ts_stack_top_position(stack, 0), Equals(tree_len * 3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateC, 0},
{stateB, 1},
{stateA, 2},
{1, 3},
})));
});
it("increments the version's push count", [&]() {
AssertThat(ts_stack_push_count(stack, 0), Equals<unsigned>(0));
ts_stack_push(stack, 0, trees[0], false, stateA);
AssertThat(ts_stack_push_count(stack, 0), Equals<unsigned>(1));
});
});
describe("merge()", [&]() {
before_each([&]() {
// . <──0── A <──1── B*
// ↑
// └───2─── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_duplicate_version(stack, 0);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 1, trees[2], false, stateC);
});
it("combines versions that have the same top states and positions", [&]() {
// . <──0── A <──1── B <──3── D*
// ↑
// └───2─── C <──4── D*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
// . <──0── A <──1── B <──3── D*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateD, 0},
{stateB, 1},
{stateC, 1},
{stateA, 2},
{1, 3},
})));
});
it("does not combine versions that have different states", [&]() {
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
it("does not combine versions that have different positions", [&]() {
// . <──0── A <──1── B <────3──── D*
// ↑
// └───2─── C <──4── D*
trees[3]->size = tree_len * 3;
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 1, trees[4], false, stateD);
AssertThat(ts_stack_merge(stack, 0, 1), IsFalse());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
});
describe("when the merged versions have more than one common entry", [&]() {
it("combines all of the top common entries", [&]() {
// . <──0── A <──1── B <──3── D <──5── E*
// ↑
// └───2─── C <──4── D <──5── E*
ts_stack_push(stack, 0, trees[3], false, stateD);
ts_stack_push(stack, 0, trees[5], false, stateE);
ts_stack_push(stack, 1, trees[4], false, stateD);
ts_stack_push(stack, 1, trees[5], false, stateE);
// . <──0── A <──1── B <──3── D <──5── E*
// ↑ |
// └───2─── C <──4───┘
AssertThat(ts_stack_merge(stack, 0, 1), IsTrue());
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateE, 0},
{stateD, 1},
{stateB, 2},
{stateC, 2},
{stateA, 3},
{1, 4},
})));
});
});
});
describe("pop_count(version, count)", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C*
ts_stack_push(stack, 0, trees[0], false, stateA);
ts_stack_push(stack, 0, trees[1], false, stateB);
ts_stack_push(stack, 0, trees[2], false, stateC);
});
it("creates a new version with the given number of entries removed", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pop.slices);
});
it("does not count 'extra' trees toward the given count", [&]() {
trees[1]->extra = true;
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
AssertThat(ts_stack_top_state(stack, 1), Equals(1));
free_slice_array(&pop.slices);
});
it("stops popping entries early if it reaches an error tree", [&]() {
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
ts_stack_push(stack, 0, trees[3], false, ERROR_STATE);
ts_stack_push(stack, 0, trees[4], false, stateD);
// . <──0── A <──1── B <──2── C <──3── ERROR <──4── D*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.status, Equals(StackPopResult::StackPopStoppedAtError));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 1), Equals(ERROR_STATE));
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice = pop.slices.contents[0];
AssertThat(slice.version, Equals<StackVersion>(1));
AssertThat(slice.trees, Equals(vector<TSTree *>({ trees[4] })));
free_slice_array(&pop.slices);
});
it("preserves the push count of the popped version", [&]() {
// . <──0── A <──1── B <──2── C*
// ↑
// └─*
StackPopResult pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(ts_stack_push_count(stack, 0), Equals<unsigned>(3));
AssertThat(ts_stack_push_count(stack, 1), Equals<unsigned>(3));
free_slice_array(&pop.slices);
});
describe("when the version has been merged", [&]() {
before_each([&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// └───4─── E <──5── F <──6───┘
ts_stack_push(stack, 0, trees[3], false, stateD);
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
free_slice_array(&pop.slices);
ts_stack_push(stack, 1, trees[4], false, stateE);
ts_stack_push(stack, 1, trees[5], false, stateF);
ts_stack_push(stack, 1, trees[6], false, stateD);
ts_stack_merge(stack, 0, 1);
ts_stack_push(stack, 0, trees[10], false, stateI);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
});
describe("when there are two paths that reveal different versions", [&]() {
it("returns an entry for each revealed version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// └───4─── E*
StackPopResult pop = ts_stack_pop_count(stack, 0, 3);
AssertThat(pop.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[10] })));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(3));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateB, 3},
{stateE, 3},
{stateA, 4},
{1, 5},
})));
AssertThat(get_stack_entries(stack, 1), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
AssertThat(get_stack_entries(stack, 2), Equals(vector<StackEntry>({
{stateE, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pop.slices);
});
});
describe("when there is one path that ends at a merged version", [&]() {
it("returns a single entry", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// | |
// └───5─── F <──6── G <──7───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 1);
AssertThat(pop.slices.size, Equals<size_t>(1));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[10] })));
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateD));
free_slice_array(&pop.slices);
});
});
describe("when there are two paths that converge on one version", [&]() {
it("returns two slices with the same version", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// |
// └*
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
AssertThat(pop.slices.size, Equals<size_t>(2));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[1], trees[2], trees[3], trees[10] })));
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(1));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[4], trees[5], trees[6], trees[10] })))
AssertThat(ts_stack_version_count(stack), Equals<size_t>(2));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateA));
free_slice_array(&pop.slices);
});
});
describe("when there are three paths that lead to three different versions", [&]() {
it("returns three entries with different arrays of trees", [&]() {
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ |
// ├───4─── E <──5── F <──6───┘
// | |
// └───7─── G <──8── H <──9───┘
StackPopResult pop = ts_stack_pop_count(stack, 0, 4);
free_slice_array(&pop.slices);
ts_stack_push(stack, 1, trees[7], false, stateG);
ts_stack_push(stack, 1, trees[8], false, stateH);
ts_stack_push(stack, 1, trees[9], false, stateD);
ts_stack_push(stack, 1, trees[10], false, stateI);
ts_stack_merge(stack, 0, 1);
AssertThat(ts_stack_version_count(stack), Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateI, 0},
{stateD, 1},
{stateC, 2},
{stateF, 2},
{stateH, 2},
{stateB, 3},
{stateE, 3},
{stateG, 3},
{stateA, 4},
{1, 5},
})));
// . <──0── A <──1── B <──2── C <──3── D <──10── I*
// ↑ ↑
// | └*
// |
// ├───4─── E <──5── F*
// |
// └───7─── G <──8── H*
pop = ts_stack_pop_count(stack, 0, 2);
AssertThat(pop.slices.size, Equals<size_t>(3));
StackSlice slice1 = pop.slices.contents[0];
AssertThat(slice1.version, Equals<StackVersion>(1));
AssertThat(slice1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
StackSlice slice2 = pop.slices.contents[1];
AssertThat(slice2.version, Equals<StackVersion>(2));
AssertThat(slice2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
StackSlice slice3 = pop.slices.contents[2];
AssertThat(slice3.version, Equals<StackVersion>(3));
AssertThat(slice3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
AssertThat(ts_stack_version_count(stack), Equals<size_t>(4));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateI));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
AssertThat(ts_stack_top_state(stack, 2), Equals(stateF));
AssertThat(ts_stack_top_state(stack, 3), Equals(stateH));
free_slice_array(&pop.slices);
});
});
});
});
describe("pop_pending(version)", [&]() {
before_each([&]() {
ts_stack_push(stack, 0, trees[0], false, stateA);
});
it("removes the top node from the stack if it was pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], true, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pop.slices);
});
it("skips entries whose trees are extra", [&]() {
ts_stack_push(stack, 0, trees[1], true, stateB);
trees[2]->extra = true;
trees[3]->extra = true;
ts_stack_push(stack, 0, trees[2], false, stateB);
ts_stack_push(stack, 0, trees[3], false, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(1));
AssertThat(pop.slices.contents[0].trees, Equals(vector<TSTree *>({ trees[1], trees[2], trees[3] })));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateA, 0},
{1, 1},
})));
free_slice_array(&pop.slices);
});
it("does nothing if the top node was not pushed in pending mode", [&]() {
ts_stack_push(stack, 0, trees[1], false, stateB);
StackPopResult pop = ts_stack_pop_pending(stack, 0);
AssertThat(pop.status, Equals(StackPopResult::StackPopSucceeded));
AssertThat(pop.slices.size, Equals<size_t>(0));
AssertThat(get_stack_entries(stack, 0), Equals(vector<StackEntry>({
{stateB, 0},
{stateA, 1},
{1, 2},
})));
free_slice_array(&pop.slices);
});
});
});
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && left.depth == right.depth;
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.depth << "}";
}
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
stream << "[";
bool first = true;
for (size_t i = 0; i < array.size; i++) {
if (!first)
stream << ", ";
first = false;
stream << array.contents[i];
}
return stream << "]";
}