tree-sitter/spec/runtime/stack_spec.cc
Max Brunsfeld f08554e958 Replace NodeType enum with SymbolMetadata bitfield
This will allow storing other metadata about symbols, like if they
only appear as ubiquitous tokens
2015-12-02 15:10:24 -08:00

540 lines
19 KiB
C++

#include "runtime/runtime_spec_helper.h"
#include "runtime/helpers/tree_helpers.h"
#include "runtime/stack.h"
#include "runtime/tree.h"
#include "runtime/length.h"
enum {
stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
};
enum {
symbol0 = ts_builtin_sym_start,
symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8
};
struct TreeSelectionSpy {
int call_count;
TSTree *tree_to_return;
const TSTree *arguments[2];
};
extern "C"
TSTree * tree_selection_spy_callback(void *data, TSTree *left, TSTree *right) {
TreeSelectionSpy *spy = (TreeSelectionSpy *)data;
spy->call_count++;
spy->arguments[0] = left;
spy->arguments[1] = right;
return spy->tree_to_return;
}
START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t tree_count = 10;
TSTree *trees[tree_count];
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
before_each([&]() {
stack = ts_stack_new({
&tree_selection_spy,
tree_selection_spy_callback
});
TSLength len = ts_length_make(2, 2);
TSPoint point = ts_point_make(1, 1);
for (size_t i = 0; i < tree_count; i++)
trees[i] = ts_tree_make_leaf(i, len, len, point, point, {});
});
after_each([&]() {
ts_stack_delete(stack);
for (size_t i = 0; i < tree_count; i++)
ts_tree_release(trees[i]);
});
describe("pushing entries to the stack", [&]() {
it("adds entries to the stack", [&]() {
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
/*
* A0.
*/
ts_stack_push(stack, 0, stateA, trees[0]);
const StackEntry *entry1 = ts_stack_head(stack, 0);
AssertThat(*entry1, Equals<StackEntry>({trees[0], stateA}));
AssertThat(ts_stack_entry_next_count(entry1), Equals(1));
AssertThat(ts_stack_entry_next(entry1, 0), Equals<const StackEntry *>(nullptr));
/*
* A0__B1.
*/
ts_stack_push(stack, 0, stateB, trees[1]);
const StackEntry *entry2 = ts_stack_head(stack, 0);
AssertThat(*entry2, Equals<StackEntry>({trees[1], stateB}));
AssertThat(ts_stack_entry_next_count(entry2), Equals(1));
AssertThat(ts_stack_entry_next(entry2, 0), Equals(entry1));
/*
* A0__B1__C2.
*/
ts_stack_push(stack, 0, stateC, trees[2]);
const StackEntry *entry3 = ts_stack_head(stack, 0);
AssertThat(*entry3, Equals<StackEntry>({trees[2], stateC}));
AssertThat(ts_stack_entry_next_count(entry3), Equals(1));
AssertThat(ts_stack_entry_next(entry3, 0), Equals(entry2));
});
});
describe("popping nodes from the stack", [&]() {
before_each([&]() {
/*
* A0__B1__C2.
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_push(stack, 0, stateC, trees[2]);
});
it("removes the given number of nodes from the stack", [&]() {
/*
* A0.
*/
Vector pop = ts_stack_pop(stack, 0, 2, false);
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(pop1.tree_count, Equals<size_t>(2));
AssertThat(pop1.trees[0], Equals(trees[1]));
AssertThat(pop1.trees[1], Equals(trees[2]));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[0], stateA}));
/*
* .
*/
pop = ts_stack_pop(stack, 0, 1, false);
pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(pop1.tree_count, Equals<size_t>(1));
AssertThat(pop1.trees[0], Equals(trees[0]));
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
});
it("does not count 'extra' trees toward the count", [&]() {
ts_tree_set_extra(trees[1]);
Vector pop = ts_stack_pop(stack, 0, 2, false);
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(pop1.tree_count, Equals<size_t>(3));
AssertThat(pop1.trees[0], Equals(trees[0]));
AssertThat(pop1.trees[1], Equals(trees[1]));
AssertThat(pop1.trees[2], Equals(trees[2]));
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
});
it("pops the entire stack when given a negative count", [&]() {
Vector pop = ts_stack_pop(stack, 0, -1, false);
AssertThat(pop.size, Equals<size_t>(1));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop1.tree_count, Equals<size_t>(3));
AssertThat(pop1.trees[0], Equals(trees[0]));
AssertThat(pop1.trees[1], Equals(trees[1]));
AssertThat(pop1.trees[2], Equals(trees[2]));
});
});
describe("splitting the stack", [&]() {
it("creates a new independent head with the same entries", [&]() {
/*
* A0__B1__C2.
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_push(stack, 0, stateC, trees[2]);
int new_index = ts_stack_split(stack, 0);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(new_index, Equals(1));
/*
* A0__B1__C2__D3.
* \.
*/
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_pop(stack, 1, 1, false);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[1], stateB}));
/*
* A0__B1__C2__D3.
* \__E4__F3.
*/
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[3]);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[3], stateF}));
});
});
describe("pushing the same state onto two different heads of the stack", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3.
* \__E4__F5.
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, stateC, trees[2]);
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[5]);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[5], stateF}));
});
describe("when the trees are identical", [&]() {
it("merges the heads", [&]() {
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
*/
bool merged = ts_stack_push(stack, 0, stateG, trees[6]);
AssertThat(merged, IsFalse());
merged = ts_stack_push(stack, 1, stateG, trees[6]);
AssertThat(merged, IsTrue());
AssertThat(ts_stack_head_count(stack), Equals(1));
const StackEntry *entry1 = ts_stack_head(stack, 0);
AssertThat(*entry1, Equals<StackEntry>({trees[6], stateG}));
AssertThat(ts_stack_entry_next_count(entry1), Equals(2));
AssertThat(*ts_stack_entry_next(entry1, 0), Equals<StackEntry>({trees[3], stateD}));
AssertThat(*ts_stack_entry_next(entry1, 1), Equals<StackEntry>({trees[5], stateF}));
});
});
describe("when the trees are different", [&]() {
before_each([&]() {
tree_selection_spy.tree_to_return = trees[7];
AssertThat(tree_selection_spy.call_count, Equals(0));
});
it("merges the heads, selecting the tree with the tree selection callback", [&]() {
/*
* A0__B1__C2__D3__G(6|7)
* \__E4__F5____/
*/
bool merged = ts_stack_push(stack, 0, stateG, trees[6]);
AssertThat(merged, IsFalse());
merged = ts_stack_push(stack, 1, stateG, trees[7]);
AssertThat(merged, IsTrue());
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(tree_selection_spy.call_count, Equals(1));
AssertThat(tree_selection_spy.arguments[0], Equals(trees[6]));
AssertThat(tree_selection_spy.arguments[1], Equals(trees[7]));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({
trees[7],
stateG
}));
});
});
describe("when successor nodes of the merged nodes have the same state", [&]() {
it("recursively merges those successor nodes", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__G6.
*/
bool merged = ts_stack_push(stack, 0, stateG, trees[6]);
AssertThat(merged, IsFalse());
merged = ts_stack_push(stack, 0, stateH, trees[7]);
AssertThat(merged, IsFalse());
merged = ts_stack_push(stack, 1, stateG, trees[6]);
AssertThat(merged, IsFalse());
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5_/
*/
merged = ts_stack_push(stack, 1, stateH, trees[7]);
AssertThat(merged, IsTrue());
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(*head, Equals<StackEntry>({trees[7], stateH}))
AssertThat(ts_stack_entry_next_count(head), Equals(1));
StackEntry *next = ts_stack_entry_next(head, 0);
AssertThat(*next, Equals<StackEntry>({trees[6], stateG}))
AssertThat(ts_stack_entry_next_count(next), Equals(2));
});
});
describe("when the first head is only one node deep", [&]() {
it("adds it as an additional successor node to The Null node", [&]() {
/*
* .__A0.
* B1.__/
*/
ts_stack_clear(stack);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, stateA, trees[0]);
bool merged = ts_stack_push(stack, 1, stateB, trees[1]);
AssertThat(merged, IsFalse());
merged = ts_stack_push(stack, 1, stateA, trees[0]);
AssertThat(merged, IsTrue());
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(*head, Equals<StackEntry>({trees[0], stateA}));
AssertThat(ts_stack_entry_next_count(head), Equals(2));
AssertThat(ts_stack_entry_next(head, 0), Equals<StackEntry *>(nullptr));
AssertThat(*ts_stack_entry_next(head, 1), Equals<StackEntry>({trees[1], stateB}));
});
});
});
describe("popping from a stack head that has been merged", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, stateC, trees[2]);
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_push(stack, 0, stateG, trees[6]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[5]);
ts_stack_push(stack, 1, stateG, trees[6]);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(2));
});
describe("when there are two paths that lead to two different heads", [&]() {
it("returns an entry for each revealed head", [&]() {
/*
* A0__B1__C2.
* \__E4.
*/
Vector pop = ts_stack_pop(stack, 0, 2, false);
AssertThat(pop.size, Equals<size_t>(2));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.tree_count, Equals<size_t>(2));
AssertThat(pop1.trees[0], Equals(trees[3]));
AssertThat(pop1.trees[1], Equals(trees[6]));
StackPopResult pop2 = *(StackPopResult *)vector_get(&pop, 1);
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.tree_count, Equals<size_t>(2));
AssertThat(pop2.trees[0], Equals(trees[5]));
AssertThat(pop2.trees[1], Equals(trees[6]));
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[2], stateC}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[4], stateE}));
});
});
describe("when there is one path, leading to one head", [&]() {
it("returns a single entry", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__/
*/
bool merged = ts_stack_push(stack, 0, stateH, trees[7]);
AssertThat(merged, IsFalse());
AssertThat(ts_stack_head_count(stack), Equals(1));
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
*/
Vector pop = ts_stack_pop(stack, 0, 1, false);
AssertThat(pop.size, Equals<size_t>(1));
AssertThat(ts_stack_head_count(stack), Equals(1));
});
});
describe("when there is one path that leads to two different heads", [&]() {
it("returns two entries with the same array of trees", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__/
*/
ts_stack_push(stack, 0, stateH, trees[7]);
/*
* A0__B1__C2__D3.
* \__E4__F5.
*/
Vector pop = ts_stack_pop(stack, 0, 2, false);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(pop.size, Equals<size_t>(2));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.tree_count, Equals<size_t>(2));
AssertThat(pop1.trees[0], Equals(trees[6]));
AssertThat(pop1.trees[1], Equals(trees[7]));
StackPopResult pop2 = *(StackPopResult *)vector_get(&pop, 1);
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.tree_count, Equals<size_t>(2));
AssertThat(pop2.trees[0], Equals(trees[6]));
AssertThat(pop2.trees[1], Equals(trees[7]));
});
});
describe("when there are two paths that converge at the same head", [&]() {
it("returns two entries for that head", [&]() {
/*
* A0__B1.
*/
Vector pop = ts_stack_pop(stack, 0, 3, false);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[1], stateB}));
AssertThat(pop.size, Equals<size_t>(2));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(pop1.tree_count, Equals<size_t>(3));
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees[0], Equals(trees[2]));
StackPopResult pop2 = *(StackPopResult *)vector_get(&pop, 1);
AssertThat(pop2.tree_count, Equals<size_t>(3));
AssertThat(pop2.head_index, Equals(0));
AssertThat(pop2.trees[0], Equals(trees[4]));
});
});
});
describe("popping from a stack head that has been 3-way merged", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3__I8__J9.
* \__E4__F5__/
* \__G6__H7__/
*/
ts_stack_clear(stack);
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_split(stack, 0);
ts_stack_split(stack, 1);
ts_stack_push(stack, 0, stateC, trees[2]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 2, stateG, trees[6]);
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_push(stack, 1, stateF, trees[5]);
ts_stack_push(stack, 2, stateH, trees[7]);
ts_stack_push(stack, 0, stateI, trees[8]);
ts_stack_push(stack, 1, stateI, trees[8]);
ts_stack_push(stack, 1, stateI, trees[8]);
ts_stack_push(stack, 0, stateJ, trees[9]);
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(ts_stack_entry_next_count(head), Equals(1));
AssertThat(ts_stack_entry_next_count(ts_stack_entry_next(head, 0)), Equals(3));
});
describe("when there is one path that leads to three different heads", [&]() {
it("returns three entries with the same array of trees", [&]() {
/*
* A0__B1__C2__D3.
* \__E4__F5.
* \__G6__H7.
*/
Vector pop = ts_stack_pop(stack, 0, 2, false);
AssertThat(ts_stack_head_count(stack), Equals(3));
AssertThat(pop.size, Equals<size_t>(3));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(ts_stack_top_tree(stack, 0), Equals(trees[3]));
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.tree_count, Equals<size_t>(2));
AssertThat(pop1.trees[0], Equals(trees[8]));
AssertThat(pop1.trees[1], Equals(trees[9]));
StackPopResult pop2 = *(StackPopResult *)vector_get(&pop, 1);
AssertThat(ts_stack_top_tree(stack, 1), Equals(trees[5]));
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.tree_count, Equals<size_t>(2));
AssertThat(pop2.trees, Equals(pop1.trees));
StackPopResult pop3 = *(StackPopResult *)vector_get(&pop, 2);
AssertThat(ts_stack_top_tree(stack, 2), Equals(trees[7]));
AssertThat(pop3.head_index, Equals(2));
AssertThat(pop3.tree_count, Equals<size_t>(2));
AssertThat(pop3.trees, Equals(pop1.trees));
});
});
describe("when there are three different paths that lead to three different heads", [&]() {
it("returns three entries with different arrays of trees", [&]() {
/*
* A0__B1__C2.
* \__E4.
* \__G6.
*/
Vector pop = ts_stack_pop(stack, 0, 3, false);
AssertThat(ts_stack_head_count(stack), Equals(3));
AssertThat(pop.size, Equals<size_t>(3));
StackPopResult pop1 = *(StackPopResult *)vector_get(&pop, 0);
AssertThat(ts_stack_top_tree(stack, 0), Equals(trees[2]));
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.tree_count, Equals<size_t>(3));
AssertThat(pop1.trees[0], Equals(trees[3]));
AssertThat(pop1.trees[1], Equals(trees[8]));
AssertThat(pop1.trees[2], Equals(trees[9]));
StackPopResult pop2 = *(StackPopResult *)vector_get(&pop, 1);
AssertThat(ts_stack_top_tree(stack, 1), Equals(trees[4]));
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.tree_count, Equals<size_t>(3));
AssertThat(pop2.trees[0], Equals(trees[5]));
AssertThat(pop2.trees[1], Equals(trees[8]));
AssertThat(pop2.trees[2], Equals(trees[9]));
StackPopResult pop3 = *(StackPopResult *)vector_get(&pop, 2);
AssertThat(ts_stack_top_tree(stack, 2), Equals(trees[6]));
AssertThat(pop3.head_index, Equals(2));
AssertThat(pop3.tree_count, Equals<size_t>(3));
AssertThat(pop3.trees[0], Equals(trees[7]));
AssertThat(pop3.trees[1], Equals(trees[8]));
AssertThat(pop3.trees[2], Equals(trees[9]));
});
});
});
});
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && ts_tree_eq(left.tree, right.tree);
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.tree << "}";
}