tree-sitter/cli/src/generate/render.rs
2020-09-23 13:06:06 -07:00

1592 lines
56 KiB
Rust

use super::grammars::{ExternalToken, LexicalGrammar, SyntaxGrammar, VariableType};
use super::nfa::CharacterSet;
use super::rules::{Alias, AliasMap, Symbol, SymbolType};
use super::tables::{
AdvanceAction, FieldLocation, GotoAction, LexState, LexTable, ParseAction, ParseTable,
ParseTableEntry,
};
use core::ops::Range;
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::fmt::Write;
use std::mem::swap;
// Currently, the library supports a new ABI version that has not yet been
// stabilized, and the parser generation does not use it by default.
const STABLE_LANGUAGE_VERSION: usize = tree_sitter::LANGUAGE_VERSION - 1;
const LARGE_CHARACTER_RANGE_COUNT: usize = 8;
macro_rules! add {
($this: tt, $($arg: tt)*) => {{
$this.buffer.write_fmt(format_args!($($arg)*)).unwrap();
}}
}
macro_rules! add_whitespace {
($this: tt) => {{
for _ in 0..$this.indent_level {
write!(&mut $this.buffer, " ").unwrap();
}
}};
}
macro_rules! add_line {
($this: tt, $($arg: tt)*) => {
add_whitespace!($this);
$this.buffer.write_fmt(format_args!($($arg)*)).unwrap();
$this.buffer += "\n";
}
}
macro_rules! indent {
($this: tt) => {
$this.indent_level += 1;
};
}
macro_rules! dedent {
($this: tt) => {
assert_ne!($this.indent_level, 0);
$this.indent_level -= 1;
};
}
const SMALL_STATE_THRESHOLD: usize = 64;
struct Generator {
buffer: String,
indent_level: usize,
language_name: String,
parse_table: ParseTable,
main_lex_table: LexTable,
keyword_lex_table: LexTable,
large_state_count: usize,
keyword_capture_token: Option<Symbol>,
syntax_grammar: SyntaxGrammar,
lexical_grammar: LexicalGrammar,
simple_aliases: AliasMap,
symbol_order: HashMap<Symbol, usize>,
symbol_ids: HashMap<Symbol, String>,
alias_ids: HashMap<Alias, String>,
unique_aliases: Vec<Alias>,
symbol_map: HashMap<Symbol, Symbol>,
field_names: Vec<String>,
next_abi: bool,
}
struct TransitionSummary {
is_included: bool,
ranges: Vec<Range<char>>,
call_id: Option<usize>,
}
struct LargeCharacterSetInfo {
ranges: Vec<Range<char>>,
symbol: Symbol,
index: usize,
usage_count: usize,
}
impl Generator {
fn generate(mut self) -> String {
self.init();
self.add_includes();
self.add_pragmas();
self.add_stats();
self.add_symbol_enum();
self.add_symbol_names_list();
self.add_unique_symbol_map();
self.add_symbol_metadata_list();
if !self.field_names.is_empty() {
self.add_field_name_enum();
self.add_field_name_names_list();
self.add_field_sequences();
}
if !self.parse_table.production_infos.is_empty() {
self.add_alias_sequences();
}
if self.next_abi {
self.add_non_terminal_alias_map();
}
let mut main_lex_table = LexTable::default();
swap(&mut main_lex_table, &mut self.main_lex_table);
self.add_lex_function("ts_lex", main_lex_table, true);
if self.keyword_capture_token.is_some() {
let mut keyword_lex_table = LexTable::default();
swap(&mut keyword_lex_table, &mut self.keyword_lex_table);
self.add_lex_function("ts_lex_keywords", keyword_lex_table, false);
}
self.add_lex_modes_list();
if !self.syntax_grammar.external_tokens.is_empty() {
self.add_external_token_enum();
self.add_external_scanner_symbol_map();
self.add_external_scanner_states_list();
}
self.add_parse_table();
self.add_parser_export();
self.buffer
}
fn init(&mut self) {
let mut symbol_identifiers = HashSet::new();
for i in 0..self.parse_table.symbols.len() {
self.assign_symbol_id(self.parse_table.symbols[i], &mut symbol_identifiers);
}
let mut field_names = Vec::new();
for production_info in &self.parse_table.production_infos {
for field_name in production_info.field_map.keys() {
field_names.push(field_name);
}
for alias in &production_info.alias_sequence {
if let Some(alias) = &alias {
let alias_kind = alias.kind();
let matching_symbol = self.parse_table.symbols.iter().cloned().find(|symbol| {
let (name, kind) = self.metadata_for_symbol(*symbol);
name == alias.value && kind == alias_kind
});
let alias_id = if let Some(symbol) = matching_symbol {
self.symbol_ids[&symbol].clone()
} else if alias.is_named {
format!("alias_sym_{}", self.sanitize_identifier(&alias.value))
} else {
format!("anon_alias_sym_{}", self.sanitize_identifier(&alias.value))
};
self.alias_ids.entry(alias.clone()).or_insert(alias_id);
}
}
}
self.unique_aliases = self
.alias_ids
.keys()
.filter(|alias| {
self.parse_table
.symbols
.iter()
.cloned()
.find(|symbol| {
let (name, kind) = self.metadata_for_symbol(*symbol);
name == alias.value && kind == alias.kind()
})
.is_none()
})
.cloned()
.collect();
self.unique_aliases.sort_unstable();
self.symbol_map = self
.parse_table
.symbols
.iter()
.map(|symbol| {
let mut mapping = symbol;
// There can be multiple symbols in the grammar that have the same name and kind,
// due to simple aliases. When that happens, ensure that they map to the same
// public-facing symbol. If one of the symbols is not aliased, choose that one
// to be the public-facing symbol. Otherwise, pick the symbol with the lowest
// numeric value.
if let Some(alias) = self.simple_aliases.get(symbol) {
let kind = alias.kind();
for other_symbol in &self.parse_table.symbols {
if let Some(other_alias) = self.simple_aliases.get(other_symbol) {
if other_symbol < mapping && other_alias == alias {
mapping = other_symbol;
}
} else if self.metadata_for_symbol(*other_symbol) == (&alias.value, kind) {
mapping = other_symbol;
break;
}
}
}
// Two anonymous tokens with different flags but the same string value
// should be represented with the same symbol in the public API. Examples:
// * "<" and token(prec(1, "<"))
// * "(" and token.immediate("(")
else if symbol.is_terminal() {
let metadata = self.metadata_for_symbol(*symbol);
for other_symbol in &self.parse_table.symbols {
let other_metadata = self.metadata_for_symbol(*other_symbol);
if other_metadata == metadata {
mapping = other_symbol;
break;
}
}
}
(*symbol, *mapping)
})
.collect();
field_names.sort_unstable();
field_names.dedup();
self.field_names = field_names.into_iter().cloned().collect();
// If we are opting in to the new unstable language ABI, then use the concept of
// "small parse states". Otherwise, use the same representation for all parse
// states.
let threshold = cmp::min(SMALL_STATE_THRESHOLD, self.parse_table.symbols.len() / 2);
self.large_state_count = self
.parse_table
.states
.iter()
.enumerate()
.take_while(|(i, s)| {
*i <= 1 || s.terminal_entries.len() + s.nonterminal_entries.len() > threshold
})
.count();
}
fn add_includes(&mut self) {
add_line!(self, "#include <tree_sitter/parser.h>");
add_line!(self, "");
}
fn add_pragmas(&mut self) {
add_line!(self, "#if defined(__GNUC__) || defined(__clang__)");
add_line!(self, "#pragma GCC diagnostic push");
add_line!(
self,
"#pragma GCC diagnostic ignored \"-Wmissing-field-initializers\""
);
add_line!(self, "#endif");
add_line!(self, "");
// Compiling large lexer functions can be very slow. Disabling optimizations
// is not ideal, but only a very small fraction of overall parse time is
// spent lexing, so the performance impact of this is negligible.
if self.main_lex_table.states.len() > 300 {
add_line!(self, "#ifdef _MSC_VER");
add_line!(self, "#pragma optimize(\"\", off)");
add_line!(self, "#elif defined(__clang__)");
add_line!(self, "#pragma clang optimize off");
add_line!(self, "#elif defined(__GNUC__)");
add_line!(self, "#pragma GCC optimize (\"O0\")");
add_line!(self, "#endif");
add_line!(self, "");
}
}
fn add_stats(&mut self) {
let token_count = self
.parse_table
.symbols
.iter()
.filter(|symbol| {
if symbol.is_terminal() || symbol.is_eof() {
true
} else if symbol.is_external() {
self.syntax_grammar.external_tokens[symbol.index]
.corresponding_internal_token
.is_none()
} else {
false
}
})
.count();
if self.next_abi {
add_line!(
self,
"#define LANGUAGE_VERSION {}",
tree_sitter::LANGUAGE_VERSION
);
} else {
add_line!(self, "#define LANGUAGE_VERSION {}", STABLE_LANGUAGE_VERSION);
}
add_line!(
self,
"#define STATE_COUNT {}",
self.parse_table.states.len()
);
add_line!(self, "#define LARGE_STATE_COUNT {}", self.large_state_count);
add_line!(
self,
"#define SYMBOL_COUNT {}",
self.parse_table.symbols.len()
);
add_line!(self, "#define ALIAS_COUNT {}", self.unique_aliases.len(),);
add_line!(self, "#define TOKEN_COUNT {}", token_count);
add_line!(
self,
"#define EXTERNAL_TOKEN_COUNT {}",
self.syntax_grammar.external_tokens.len()
);
add_line!(self, "#define FIELD_COUNT {}", self.field_names.len());
add_line!(
self,
"#define MAX_ALIAS_SEQUENCE_LENGTH {}",
self.parse_table.max_aliased_production_length
);
add_line!(self, "");
}
fn add_symbol_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
self.symbol_order.insert(Symbol::end(), 0);
let mut i = 1;
for symbol in self.parse_table.symbols.iter() {
if *symbol != Symbol::end() {
self.symbol_order.insert(*symbol, i);
add_line!(self, "{} = {},", self.symbol_ids[&symbol], i);
i += 1;
}
}
for alias in &self.unique_aliases {
add_line!(self, "{} = {},", self.alias_ids[&alias], i);
i += 1;
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_symbol_names_list(&mut self) {
add_line!(self, "static const char *ts_symbol_names[] = {{");
indent!(self);
for symbol in self.parse_table.symbols.iter() {
let name = self.sanitize_string(
self.simple_aliases
.get(symbol)
.map(|alias| alias.value.as_str())
.unwrap_or(self.metadata_for_symbol(*symbol).0),
);
add_line!(self, "[{}] = \"{}\",", self.symbol_ids[&symbol], name);
}
for alias in &self.unique_aliases {
add_line!(
self,
"[{}] = \"{}\",",
self.alias_ids[&alias],
self.sanitize_string(&alias.value)
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_unique_symbol_map(&mut self) {
add_line!(self, "static TSSymbol ts_symbol_map[] = {{");
indent!(self);
for symbol in &self.parse_table.symbols {
add_line!(
self,
"[{}] = {},",
self.symbol_ids[symbol],
self.symbol_ids[&self.symbol_map[symbol]],
);
}
for alias in &self.unique_aliases {
add_line!(
self,
"[{}] = {},",
self.alias_ids[&alias],
self.alias_ids[&alias],
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_name_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
for (i, field_name) in self.field_names.iter().enumerate() {
add_line!(self, "{} = {},", self.field_id(field_name), i + 1);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_name_names_list(&mut self) {
add_line!(self, "static const char *ts_field_names[] = {{");
indent!(self);
add_line!(self, "[0] = NULL,");
for field_name in &self.field_names {
add_line!(
self,
"[{}] = \"{}\",",
self.field_id(field_name),
field_name
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_symbol_metadata_list(&mut self) {
add_line!(
self,
"static const TSSymbolMetadata ts_symbol_metadata[] = {{"
);
indent!(self);
for symbol in &self.parse_table.symbols {
add_line!(self, "[{}] = {{", self.symbol_ids[&symbol]);
indent!(self);
if let Some(Alias { is_named, .. }) = self.simple_aliases.get(symbol) {
add_line!(self, ".visible = true,");
add_line!(self, ".named = {},", is_named);
} else {
match self.metadata_for_symbol(*symbol).1 {
VariableType::Named => {
add_line!(self, ".visible = true,");
add_line!(self, ".named = true,");
}
VariableType::Anonymous => {
add_line!(self, ".visible = true,");
add_line!(self, ".named = false,");
}
VariableType::Hidden => {
add_line!(self, ".visible = false,");
add_line!(self, ".named = true,");
if self.syntax_grammar.supertype_symbols.contains(symbol) {
add_line!(self, ".supertype = true,");
}
}
VariableType::Auxiliary => {
add_line!(self, ".visible = false,");
add_line!(self, ".named = false,");
}
}
}
dedent!(self);
add_line!(self, "}},");
}
for alias in &self.unique_aliases {
add_line!(self, "[{}] = {{", self.alias_ids[&alias]);
indent!(self);
add_line!(self, ".visible = true,");
add_line!(self, ".named = {},", alias.is_named);
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_alias_sequences(&mut self) {
add_line!(
self,
"static TSSymbol ts_alias_sequences[{}][MAX_ALIAS_SEQUENCE_LENGTH] = {{",
self.parse_table.production_infos.len()
);
indent!(self);
for (i, production_info) in self.parse_table.production_infos.iter().enumerate() {
if production_info.alias_sequence.is_empty() {
// Work around MSVC's intolerance of empty array initializers by
// explicitly zero-initializing the first element.
if i == 0 {
add_line!(self, "[0] = {{0}},");
}
continue;
}
add_line!(self, "[{}] = {{", i);
indent!(self);
for (j, alias) in production_info.alias_sequence.iter().enumerate() {
if let Some(alias) = alias {
add_line!(self, "[{}] = {},", j, self.alias_ids[&alias]);
}
}
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_non_terminal_alias_map(&mut self) {
let mut aliases_by_symbol = HashMap::new();
for variable in &self.syntax_grammar.variables {
for production in &variable.productions {
for step in &production.steps {
if let Some(alias) = &step.alias {
if step.symbol.is_non_terminal()
&& !self.simple_aliases.contains_key(&step.symbol)
{
if self.symbol_ids.contains_key(&step.symbol) {
let alias_ids =
aliases_by_symbol.entry(step.symbol).or_insert(Vec::new());
if let Err(i) = alias_ids.binary_search(&alias) {
alias_ids.insert(i, alias);
}
}
}
}
}
}
}
let mut aliases_by_symbol = aliases_by_symbol.iter().collect::<Vec<_>>();
aliases_by_symbol.sort_unstable_by_key(|e| e.0);
add_line!(self, "static uint16_t ts_non_terminal_alias_map[] = {{");
indent!(self);
for (symbol, aliases) in aliases_by_symbol {
let symbol_id = &self.symbol_ids[symbol];
let public_symbol_id = &self.symbol_ids[&self.symbol_map[&symbol]];
add_line!(self, "{}, {},", symbol_id, 1 + aliases.len());
indent!(self);
add_line!(self, "{},", public_symbol_id);
for alias in aliases {
add_line!(self, "{},", &self.alias_ids[&alias]);
}
dedent!(self);
}
add_line!(self, "0,");
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_field_sequences(&mut self) {
let mut flat_field_maps = vec![];
let mut next_flat_field_map_index = 0;
self.get_field_map_id(
&Vec::new(),
&mut flat_field_maps,
&mut next_flat_field_map_index,
);
let mut field_map_ids = Vec::new();
for production_info in &self.parse_table.production_infos {
if !production_info.field_map.is_empty() {
let mut flat_field_map = Vec::new();
for (field_name, locations) in &production_info.field_map {
for location in locations {
flat_field_map.push((field_name.clone(), *location));
}
}
field_map_ids.push((
self.get_field_map_id(
&flat_field_map,
&mut flat_field_maps,
&mut next_flat_field_map_index,
),
flat_field_map.len(),
));
} else {
field_map_ids.push((0, 0));
}
}
add_line!(
self,
"static const TSFieldMapSlice ts_field_map_slices[{}] = {{",
self.parse_table.production_infos.len(),
);
indent!(self);
for (production_id, (row_id, length)) in field_map_ids.into_iter().enumerate() {
if length > 0 {
add_line!(
self,
"[{}] = {{.index = {}, .length = {}}},",
production_id,
row_id,
length
);
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
add_line!(
self,
"static const TSFieldMapEntry ts_field_map_entries[] = {{",
);
indent!(self);
for (row_index, field_pairs) in flat_field_maps.into_iter().skip(1) {
add_line!(self, "[{}] =", row_index);
indent!(self);
for (field_name, location) in field_pairs {
add_whitespace!(self);
add!(self, "{{{}, {}", self.field_id(&field_name), location.index);
if location.inherited {
add!(self, ", .inherited = true");
}
add!(self, "}},\n");
}
dedent!(self);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_lex_function(
&mut self,
name: &str,
lex_table: LexTable,
extract_helper_functions: bool,
) {
let mut ruled_out_chars = HashSet::new();
let mut large_character_sets = Vec::<LargeCharacterSetInfo>::new();
// For each lex state, compute a summary of the code that needs to be
// generated.
let state_transition_summaries: Vec<Vec<TransitionSummary>> = lex_table
.states
.iter()
.map(|state| {
ruled_out_chars.clear();
// For each state transition, compute the set of character ranges
// that need to be checked.
state
.advance_actions
.iter()
.map(|(chars, action)| {
let (chars, is_included) = match chars {
CharacterSet::Include(c) => (c, true),
CharacterSet::Exclude(c) => (c, false),
};
let mut call_id = None;
let mut ranges =
CharacterSet::ranges(chars, &ruled_out_chars).collect::<Vec<_>>();
if is_included {
ruled_out_chars.extend(chars.iter().map(|c| *c as u32));
} else {
ranges.insert(0, '\0'..'\0')
}
// Record any large character sets so that they can be extracted
// into helper functions, reducing code duplication.
if extract_helper_functions && ranges.len() > LARGE_CHARACTER_RANGE_COUNT {
let char_set_symbol = self
.symbol_for_advance_action(action, &lex_table)
.expect("No symbol for lex state");
let mut count_for_symbol = 0;
for (i, info) in large_character_sets.iter_mut().enumerate() {
if info.ranges == ranges {
call_id = Some(i);
info.usage_count += 1;
break;
}
if info.symbol == char_set_symbol {
count_for_symbol += 1;
}
}
if call_id.is_none() {
call_id = Some(large_character_sets.len());
large_character_sets.push(LargeCharacterSetInfo {
symbol: char_set_symbol,
index: count_for_symbol + 1,
ranges: ranges.clone(),
usage_count: 1,
});
}
}
TransitionSummary {
is_included,
ranges,
call_id,
}
})
.collect()
})
.collect();
// Generate a helper function for each large character set.
let mut sorted_large_char_sets: Vec<_> = large_character_sets.iter().map(|e| e).collect();
sorted_large_char_sets.sort_unstable_by_key(|info| (info.symbol, info.index));
for info in sorted_large_char_sets {
if info.usage_count > 1 {
add_line!(
self,
"static inline bool {}_character_set_{}(int32_t lookahead) {{",
self.symbol_ids[&info.symbol],
info.index
);
indent!(self);
add_line!(self, "return");
indent!(self);
add_whitespace!(self);
self.add_character_range_conditions(&info.ranges, true, 0);
add!(self, ";\n");
dedent!(self);
dedent!(self);
add_line!(self, "}}");
add_line!(self, "");
}
}
add_line!(
self,
"static bool {}(TSLexer *lexer, TSStateId state) {{",
name
);
indent!(self);
add_line!(self, "START_LEXER();");
add_line!(self, "eof = lexer->eof(lexer);");
add_line!(self, "switch (state) {{");
indent!(self);
for (i, state) in lex_table.states.into_iter().enumerate() {
add_line!(self, "case {}:", i);
indent!(self);
self.add_lex_state(state, &state_transition_summaries[i], &large_character_sets);
dedent!(self);
}
add_line!(self, "default:");
indent!(self);
add_line!(self, "return false;");
dedent!(self);
dedent!(self);
add_line!(self, "}}");
dedent!(self);
add_line!(self, "}}");
add_line!(self, "");
}
fn symbol_for_advance_action(
&self,
action: &AdvanceAction,
lex_table: &LexTable,
) -> Option<Symbol> {
let mut state_ids = vec![action.state];
let mut i = 0;
while i < state_ids.len() {
let id = state_ids[i];
let state = &lex_table.states[id];
if let Some(accept) = state.accept_action {
return Some(accept);
}
for (_, action) in &state.advance_actions {
if !state_ids.contains(&action.state) {
state_ids.push(action.state);
}
}
i += 1;
}
return None;
}
fn add_lex_state(
&mut self,
state: LexState,
transition_info: &Vec<TransitionSummary>,
large_character_sets: &Vec<LargeCharacterSetInfo>,
) {
if let Some(accept_action) = state.accept_action {
add_line!(self, "ACCEPT_TOKEN({});", self.symbol_ids[&accept_action]);
}
if let Some(eof_action) = state.eof_action {
add_line!(self, "if (eof) ADVANCE({});", eof_action.state);
}
for (i, (_, action)) in state.advance_actions.into_iter().enumerate() {
let transition = &transition_info[i];
add_whitespace!(self);
// If there is a helper function for this transition's character
// set, then generate a call to that helper function.
if let Some(call_id) = transition.call_id {
let info = &large_character_sets[call_id];
if info.usage_count > 1 {
add!(self, "if (");
if !transition.is_included {
add!(self, "!");
}
add!(
self,
"{}_character_set_{}(lookahead)) ",
self.symbol_ids[&info.symbol],
info.index
);
self.add_advance_action(&action);
add!(self, "\n");
continue;
}
}
// Otherwise, generate code to compare the lookahead character
// with all of the character ranges.
if transition.ranges.len() > 0 {
add!(self, "if (");
self.add_character_range_conditions(&transition.ranges, transition.is_included, 2);
add!(self, ") ");
}
self.add_advance_action(&action);
add!(self, "\n");
}
add_line!(self, "END_STATE();");
}
fn add_character_range_conditions(
&mut self,
ranges: &[Range<char>],
is_included: bool,
indent_count: usize,
) -> bool {
let mut line_break = "\n".to_string();
for _ in 0..self.indent_level + indent_count {
line_break.push_str(" ");
}
let mut did_add = false;
for range in ranges {
if is_included {
if did_add {
add!(self, " ||{}", line_break);
}
if range.end == range.start {
add!(self, "lookahead == ");
self.add_character(range.start);
} else if range.end as u32 == range.start as u32 + 1 {
add!(self, "lookahead == ");
self.add_character(range.start);
add!(self, " ||{}lookahead == ", line_break);
self.add_character(range.end);
} else {
add!(self, "(");
self.add_character(range.start);
add!(self, " <= lookahead && lookahead <= ");
self.add_character(range.end);
add!(self, ")");
}
} else {
if did_add {
add!(self, " &&{}", line_break);
}
if range.end == range.start {
add!(self, "lookahead != ");
self.add_character(range.start);
} else if range.end as u32 == range.start as u32 + 1 {
add!(self, "lookahead != ");
self.add_character(range.start);
add!(self, " &&{}lookahead != ", line_break);
self.add_character(range.end);
} else {
add!(self, "(lookahead < ");
self.add_character(range.start);
add!(self, " || ");
self.add_character(range.end);
add!(self, " < lookahead)");
}
}
did_add = true;
}
did_add
}
fn add_advance_action(&mut self, action: &AdvanceAction) {
if action.in_main_token {
add!(self, "ADVANCE({});", action.state);
} else {
add!(self, "SKIP({})", action.state);
}
}
fn add_lex_modes_list(&mut self) {
add_line!(self, "static TSLexMode ts_lex_modes[STATE_COUNT] = {{");
indent!(self);
for (i, state) in self.parse_table.states.iter().enumerate() {
if state.is_non_terminal_extra
&& state.terminal_entries.len() == 1
&& *state.terminal_entries.iter().next().unwrap().0 == Symbol::end()
{
add_line!(self, "[{}] = {{(TSStateId)(-1)}},", i,);
} else if state.external_lex_state_id > 0 {
add_line!(
self,
"[{}] = {{.lex_state = {}, .external_lex_state = {}}},",
i,
state.lex_state_id,
state.external_lex_state_id
);
} else {
add_line!(self, "[{}] = {{.lex_state = {}}},", i, state.lex_state_id);
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_token_enum(&mut self) {
add_line!(self, "enum {{");
indent!(self);
for i in 0..self.syntax_grammar.external_tokens.len() {
add_line!(
self,
"{} = {},",
self.external_token_id(&self.syntax_grammar.external_tokens[i]),
i
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_scanner_symbol_map(&mut self) {
add_line!(
self,
"static TSSymbol ts_external_scanner_symbol_map[EXTERNAL_TOKEN_COUNT] = {{"
);
indent!(self);
for i in 0..self.syntax_grammar.external_tokens.len() {
let token = &self.syntax_grammar.external_tokens[i];
let id_token = token
.corresponding_internal_token
.unwrap_or(Symbol::external(i));
add_line!(
self,
"[{}] = {},",
self.external_token_id(&token),
self.symbol_ids[&id_token],
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_external_scanner_states_list(&mut self) {
add_line!(
self,
"static bool ts_external_scanner_states[{}][EXTERNAL_TOKEN_COUNT] = {{",
self.parse_table.external_lex_states.len(),
);
indent!(self);
for i in 0..self.parse_table.external_lex_states.len() {
if !self.parse_table.external_lex_states[i].is_empty() {
add_line!(self, "[{}] = {{", i);
indent!(self);
for token in self.parse_table.external_lex_states[i].iter() {
add_line!(
self,
"[{}] = true,",
self.external_token_id(&self.syntax_grammar.external_tokens[token.index])
);
}
dedent!(self);
add_line!(self, "}},");
}
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_parse_table(&mut self) {
let mut parse_table_entries = Vec::new();
let mut next_parse_action_list_index = 0;
self.get_parse_action_list_id(
&ParseTableEntry {
actions: Vec::new(),
reusable: false,
},
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
add_line!(
self,
"static uint16_t ts_parse_table[LARGE_STATE_COUNT][SYMBOL_COUNT] = {{",
);
indent!(self);
let mut terminal_entries = Vec::new();
let mut nonterminal_entries = Vec::new();
for (i, state) in self
.parse_table
.states
.iter()
.enumerate()
.take(self.large_state_count)
{
add_line!(self, "[{}] = {{", i);
indent!(self);
// Ensure the entries are in a deterministic order, since they are
// internally represented as a hash map.
terminal_entries.clear();
nonterminal_entries.clear();
terminal_entries.extend(state.terminal_entries.iter());
nonterminal_entries.extend(state.nonterminal_entries.iter());
terminal_entries.sort_unstable_by_key(|e| self.symbol_order.get(e.0));
nonterminal_entries.sort_unstable_by_key(|k| k.0);
for (symbol, action) in &nonterminal_entries {
add_line!(
self,
"[{}] = STATE({}),",
self.symbol_ids[symbol],
match action {
GotoAction::Goto(state) => *state,
GotoAction::ShiftExtra => i,
}
);
}
for (symbol, entry) in &terminal_entries {
let entry_id = self.get_parse_action_list_id(
entry,
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
add_line!(
self,
"[{}] = ACTIONS({}),",
self.symbol_ids[symbol],
entry_id
);
}
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
if self.large_state_count < self.parse_table.states.len() {
add_line!(self, "static uint16_t ts_small_parse_table[] = {{");
indent!(self);
let mut index = 0;
let mut small_state_indices = Vec::new();
let mut symbols_by_value: HashMap<(usize, SymbolType), Vec<Symbol>> = HashMap::new();
for state in self.parse_table.states.iter().skip(self.large_state_count) {
small_state_indices.push(index);
symbols_by_value.clear();
terminal_entries.clear();
terminal_entries.extend(state.terminal_entries.iter());
terminal_entries.sort_unstable_by_key(|e| self.symbol_order.get(e.0));
// In a given parse state, many lookahead symbols have the same actions.
// So in the "small state" representation, group symbols by their action
// in order to avoid repeating the action.
for (symbol, entry) in &terminal_entries {
let entry_id = self.get_parse_action_list_id(
entry,
&mut parse_table_entries,
&mut next_parse_action_list_index,
);
symbols_by_value
.entry((entry_id, SymbolType::Terminal))
.or_default()
.push(**symbol);
}
for (symbol, action) in &state.nonterminal_entries {
let state_id = match action {
GotoAction::Goto(i) => *i,
GotoAction::ShiftExtra => {
self.large_state_count + small_state_indices.len() - 1
}
};
symbols_by_value
.entry((state_id, SymbolType::NonTerminal))
.or_default()
.push(*symbol);
}
let mut values_with_symbols = symbols_by_value.drain().collect::<Vec<_>>();
values_with_symbols.sort_unstable_by_key(|((value, kind), symbols)| {
(symbols.len(), *kind, *value, symbols[0])
});
add_line!(self, "[{}] = {},", index, values_with_symbols.len());
indent!(self);
for ((value, kind), symbols) in values_with_symbols.iter_mut() {
if *kind == SymbolType::NonTerminal {
add_line!(self, "STATE({}), {},", value, symbols.len());
} else {
add_line!(self, "ACTIONS({}), {},", value, symbols.len());
}
symbols.sort_unstable();
indent!(self);
for symbol in symbols {
add_line!(self, "{},", self.symbol_ids[symbol]);
}
dedent!(self);
}
dedent!(self);
index += 1 + values_with_symbols
.iter()
.map(|(_, symbols)| 2 + symbols.len())
.sum::<usize>();
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
add_line!(self, "static uint32_t ts_small_parse_table_map[] = {{");
indent!(self);
for i in self.large_state_count..self.parse_table.states.len() {
add_line!(
self,
"[SMALL_STATE({})] = {},",
i,
small_state_indices[i - self.large_state_count]
);
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
self.add_parse_action_list(parse_table_entries);
}
fn add_parse_action_list(&mut self, parse_table_entries: Vec<(usize, ParseTableEntry)>) {
add_line!(self, "static TSParseActionEntry ts_parse_actions[] = {{");
indent!(self);
for (i, entry) in parse_table_entries {
add!(
self,
" [{}] = {{.entry = {{.count = {}, .reusable = {}}}}},",
i,
entry.actions.len(),
entry.reusable
);
for action in entry.actions {
add!(self, " ");
match action {
ParseAction::Accept => add!(self, " ACCEPT_INPUT()"),
ParseAction::Recover => add!(self, "RECOVER()"),
ParseAction::ShiftExtra => add!(self, "SHIFT_EXTRA()"),
ParseAction::Shift {
state,
is_repetition,
} => {
if is_repetition {
add!(self, "SHIFT_REPEAT({})", state);
} else {
add!(self, "SHIFT({})", state);
}
}
ParseAction::Reduce {
symbol,
child_count,
dynamic_precedence,
production_id,
..
} => {
add!(self, "REDUCE({}, {}", self.symbol_ids[&symbol], child_count);
if dynamic_precedence != 0 {
add!(self, ", .dynamic_precedence = {}", dynamic_precedence);
}
if production_id != 0 {
add!(self, ", .production_id = {}", production_id);
}
add!(self, ")");
}
}
add!(self, ",")
}
add!(self, "\n");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "");
}
fn add_parser_export(&mut self) {
let language_function_name = format!("tree_sitter_{}", self.language_name);
let external_scanner_name = format!("{}_external_scanner", language_function_name);
add_line!(self, "#ifdef __cplusplus");
add_line!(self, r#"extern "C" {{"#);
add_line!(self, "#endif");
if !self.syntax_grammar.external_tokens.is_empty() {
add_line!(self, "void *{}_create(void);", external_scanner_name);
add_line!(self, "void {}_destroy(void *);", external_scanner_name);
add_line!(
self,
"bool {}_scan(void *, TSLexer *, const bool *);",
external_scanner_name
);
add_line!(
self,
"unsigned {}_serialize(void *, char *);",
external_scanner_name
);
add_line!(
self,
"void {}_deserialize(void *, const char *, unsigned);",
external_scanner_name
);
add_line!(self, "");
}
add_line!(self, "#ifdef _WIN32");
add_line!(self, "#define extern __declspec(dllexport)");
add_line!(self, "#endif");
add_line!(self, "");
add_line!(
self,
"extern const TSLanguage *{}(void) {{",
language_function_name
);
indent!(self);
add_line!(self, "static TSLanguage language = {{");
indent!(self);
add_line!(self, ".version = LANGUAGE_VERSION,");
add_line!(self, ".symbol_count = SYMBOL_COUNT,");
add_line!(self, ".alias_count = ALIAS_COUNT,");
add_line!(self, ".token_count = TOKEN_COUNT,");
add_line!(self, ".large_state_count = LARGE_STATE_COUNT,");
if self.next_abi {
add_line!(self, ".alias_map = ts_non_terminal_alias_map,");
add_line!(self, ".state_count = STATE_COUNT,");
}
add_line!(self, ".symbol_metadata = ts_symbol_metadata,");
add_line!(
self,
".parse_table = (const unsigned short *)ts_parse_table,"
);
if self.large_state_count < self.parse_table.states.len() {
add_line!(
self,
".small_parse_table = (const uint16_t *)ts_small_parse_table,"
);
add_line!(
self,
".small_parse_table_map = (const uint32_t *)ts_small_parse_table_map,"
);
}
add_line!(self, ".parse_actions = ts_parse_actions,");
add_line!(self, ".lex_modes = ts_lex_modes,");
add_line!(self, ".symbol_names = ts_symbol_names,");
add_line!(self, ".public_symbol_map = ts_symbol_map,");
if !self.parse_table.production_infos.is_empty() {
add_line!(
self,
".alias_sequences = (const TSSymbol *)ts_alias_sequences,"
);
}
add_line!(self, ".field_count = FIELD_COUNT,");
if !self.field_names.is_empty() {
add_line!(self, ".field_names = ts_field_names,");
add_line!(
self,
".field_map_slices = (const TSFieldMapSlice *)ts_field_map_slices,"
);
add_line!(
self,
".field_map_entries = (const TSFieldMapEntry *)ts_field_map_entries,"
);
}
add_line!(
self,
".max_alias_sequence_length = MAX_ALIAS_SEQUENCE_LENGTH,"
);
add_line!(self, ".lex_fn = ts_lex,");
if let Some(keyword_capture_token) = self.keyword_capture_token {
add_line!(self, ".keyword_lex_fn = ts_lex_keywords,");
add_line!(
self,
".keyword_capture_token = {},",
self.symbol_ids[&keyword_capture_token]
);
}
add_line!(self, ".external_token_count = EXTERNAL_TOKEN_COUNT,");
if !self.syntax_grammar.external_tokens.is_empty() {
add_line!(self, ".external_scanner = {{");
indent!(self);
add_line!(self, "(const bool *)ts_external_scanner_states,");
add_line!(self, "ts_external_scanner_symbol_map,");
add_line!(self, "{}_create,", external_scanner_name);
add_line!(self, "{}_destroy,", external_scanner_name);
add_line!(self, "{}_scan,", external_scanner_name);
add_line!(self, "{}_serialize,", external_scanner_name);
add_line!(self, "{}_deserialize,", external_scanner_name);
dedent!(self);
add_line!(self, "}},");
}
dedent!(self);
add_line!(self, "}};");
add_line!(self, "return &language;");
dedent!(self);
add_line!(self, "}}");
add_line!(self, "#ifdef __cplusplus");
add_line!(self, "}}");
add_line!(self, "#endif");
}
fn get_parse_action_list_id(
&self,
entry: &ParseTableEntry,
parse_table_entries: &mut Vec<(usize, ParseTableEntry)>,
next_parse_action_list_index: &mut usize,
) -> usize {
if let Some((index, _)) = parse_table_entries.iter().find(|(_, e)| *e == *entry) {
return *index;
}
let result = *next_parse_action_list_index;
parse_table_entries.push((result, entry.clone()));
*next_parse_action_list_index += 1 + entry.actions.len();
result
}
fn get_field_map_id(
&self,
flat_field_map: &Vec<(String, FieldLocation)>,
flat_field_maps: &mut Vec<(usize, Vec<(String, FieldLocation)>)>,
next_flat_field_map_index: &mut usize,
) -> usize {
if let Some((index, _)) = flat_field_maps.iter().find(|(_, e)| *e == *flat_field_map) {
return *index;
}
let result = *next_flat_field_map_index;
flat_field_maps.push((result, flat_field_map.clone()));
*next_flat_field_map_index += flat_field_map.len();
result
}
fn external_token_id(&self, token: &ExternalToken) -> String {
format!(
"ts_external_token_{}",
self.sanitize_identifier(&token.name)
)
}
fn assign_symbol_id(&mut self, symbol: Symbol, used_identifiers: &mut HashSet<String>) {
let mut id;
if symbol == Symbol::end() {
id = "ts_builtin_sym_end".to_string();
} else {
let (name, kind) = self.metadata_for_symbol(symbol);
id = match kind {
VariableType::Auxiliary => format!("aux_sym_{}", self.sanitize_identifier(name)),
VariableType::Anonymous => format!("anon_sym_{}", self.sanitize_identifier(name)),
VariableType::Hidden | VariableType::Named => {
format!("sym_{}", self.sanitize_identifier(name))
}
};
let mut suffix_number = 1;
let mut suffix = String::new();
while used_identifiers.contains(&id) {
id.drain(id.len() - suffix.len()..);
suffix_number += 1;
suffix = suffix_number.to_string();
id += &suffix;
}
}
used_identifiers.insert(id.clone());
self.symbol_ids.insert(symbol, id);
}
fn field_id(&self, field_name: &String) -> String {
format!("field_{}", field_name)
}
fn metadata_for_symbol(&self, symbol: Symbol) -> (&str, VariableType) {
match symbol.kind {
SymbolType::End => ("end", VariableType::Hidden),
SymbolType::NonTerminal => {
let variable = &self.syntax_grammar.variables[symbol.index];
(&variable.name, variable.kind)
}
SymbolType::Terminal => {
let variable = &self.lexical_grammar.variables[symbol.index];
(&variable.name, variable.kind)
}
SymbolType::External => {
let token = &self.syntax_grammar.external_tokens[symbol.index];
(&token.name, token.kind)
}
}
}
fn sanitize_identifier(&self, name: &str) -> String {
let mut result = String::with_capacity(name.len());
for c in name.chars() {
if ('a' <= c && c <= 'z')
|| ('A' <= c && c <= 'Z')
|| ('0' <= c && c <= '9')
|| c == '_'
{
result.push(c);
} else {
let replacement = match c {
'~' => "TILDE",
'`' => "BQUOTE",
'!' => "BANG",
'@' => "AT",
'#' => "POUND",
'$' => "DOLLAR",
'%' => "PERCENT",
'^' => "CARET",
'&' => "AMP",
'*' => "STAR",
'(' => "LPAREN",
')' => "RPAREN",
'-' => "DASH",
'+' => "PLUS",
'=' => "EQ",
'{' => "LBRACE",
'}' => "RBRACE",
'[' => "LBRACK",
']' => "RBRACK",
'\\' => "BSLASH",
'|' => "PIPE",
':' => "COLON",
';' => "SEMI",
'"' => "DQUOTE",
'\'' => "SQUOTE",
'<' => "LT",
'>' => "GT",
',' => "COMMA",
'.' => "DOT",
'?' => "QMARK",
'/' => "SLASH",
'\n' => "LF",
'\r' => "CR",
'\t' => "TAB",
_ => continue,
};
if !result.is_empty() && !result.ends_with("_") {
result.push('_');
}
result += replacement;
}
}
result
}
fn sanitize_string(&self, name: &str) -> String {
let mut result = String::with_capacity(name.len());
for c in name.chars() {
match c {
'\"' => result += "\\\"",
'?' => result += "\\?",
'\\' => result += "\\\\",
'\u{000c}' => result += "\\f",
'\n' => result += "\\n",
'\r' => result += "\\r",
'\t' => result += "\\t",
_ => result.push(c),
}
}
result
}
fn add_character(&mut self, c: char) {
match c {
'\'' => add!(self, "'\\''"),
'\\' => add!(self, "'\\\\'"),
'\u{000c}' => add!(self, "'\\f'"),
'\n' => add!(self, "'\\n'"),
'\t' => add!(self, "'\\t'"),
'\r' => add!(self, "'\\r'"),
_ => {
if c == ' ' || c.is_ascii_graphic() {
add!(self, "'{}'", c)
} else {
add!(self, "{}", c as u32)
}
}
}
}
}
/// Returns a String of C code for the given components of a parser.
///
/// # Arguments
///
/// * `name` - A string slice containing the name of the language
/// * `parse_table` - The generated parse table for the language
/// * `main_lex_table` - The generated lexing table for the language
/// * `keyword_lex_table` - The generated keyword lexing table for the language
/// * `keyword_capture_token` - A symbol indicating which token is used
/// for keyword capture, if any.
/// * `syntax_grammar` - The syntax grammar extracted from the language's grammar
/// * `lexical_grammar` - The lexical grammar extracted from the language's grammar
/// * `simple_aliases` - A map describing the global rename rules that should apply.
/// the keys are symbols that are *always* aliased in the same way, and the values
/// are the aliases that are applied to those symbols.
/// * `next_abi` - A boolean indicating whether to opt into the new, unstable parse
/// table format. This is mainly used for testing, when developing Tree-sitter itself.
pub(crate) fn render_c_code(
name: &str,
parse_table: ParseTable,
main_lex_table: LexTable,
keyword_lex_table: LexTable,
keyword_capture_token: Option<Symbol>,
syntax_grammar: SyntaxGrammar,
lexical_grammar: LexicalGrammar,
simple_aliases: AliasMap,
next_abi: bool,
) -> String {
Generator {
buffer: String::new(),
indent_level: 0,
language_name: name.to_string(),
large_state_count: 0,
parse_table,
main_lex_table,
keyword_lex_table,
keyword_capture_token,
syntax_grammar,
lexical_grammar,
simple_aliases,
symbol_ids: HashMap::new(),
symbol_order: HashMap::new(),
alias_ids: HashMap::new(),
symbol_map: HashMap::new(),
unique_aliases: Vec::new(),
field_names: Vec::new(),
next_abi,
}
.generate()
}