Store trees in the links between stack nodes, not in the nodes themselves

This commit is contained in:
Max Brunsfeld 2016-02-23 17:35:50 -08:00
parent abbc282950
commit da2ef7ad35
6 changed files with 295 additions and 351 deletions

View file

@ -112,6 +112,7 @@ describe("The Corpus", []() {
document = ts_document_make();
ts_document_set_language(document, get_test_language(language_name));
// ts_document_set_debugger(document, log_debugger_make(true));
// ts_document_print_debugging_graphs(document, true);
});
after_each([&]() {

View file

@ -12,7 +12,8 @@ enum {
};
enum {
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
symbol9, symbol10
};
struct TreeSelectionSpy {
@ -62,7 +63,7 @@ START_TEST
describe("Stack", [&]() {
Stack *stack;
const size_t tree_count = 10;
const size_t tree_count = 11;
TSTree *trees[tree_count];
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
TSLength tree_len = {2, 3, 0, 3};
@ -99,29 +100,29 @@ describe("Stack", [&]() {
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
/*
* A0.
* . <--0-- A*
*/
ts_stack_push(stack, 0, stateA, trees[0]);
const StackEntry *entry1 = ts_stack_head(stack, 0);
AssertThat(*entry1, Equals<StackEntry>({trees[0], stateA, tree_len}));
AssertThat(*entry1, Equals<StackEntry>({stateA, tree_len}));
AssertThat(ts_stack_entry_next_count(entry1), Equals(1));
AssertThat(ts_stack_entry_next(entry1, 0), Equals<const StackEntry *>(nullptr));
/*
* A0__B1.
* . <--0-- A <--1-- B*
*/
ts_stack_push(stack, 0, stateB, trees[1]);
const StackEntry *entry2 = ts_stack_head(stack, 0);
AssertThat(*entry2, Equals<StackEntry>({trees[1], stateB, tree_len * 2}));
AssertThat(*entry2, Equals<StackEntry>({stateB, tree_len * 2}));
AssertThat(ts_stack_entry_next_count(entry2), Equals(1));
AssertThat(ts_stack_entry_next(entry2, 0), Equals(entry1));
/*
* A0__B1__C2.
* . <--0-- A <--1-- B <--2-- C*
*/
ts_stack_push(stack, 0, stateC, trees[2]);
const StackEntry *entry3 = ts_stack_head(stack, 0);
AssertThat(*entry3, Equals<StackEntry>({trees[2], stateC, tree_len * 3}));
AssertThat(*entry3, Equals<StackEntry>({stateC, tree_len * 3}));
AssertThat(ts_stack_entry_next_count(entry3), Equals(1));
AssertThat(ts_stack_entry_next(entry3, 0), Equals(entry2));
});
@ -130,7 +131,7 @@ describe("Stack", [&]() {
describe("popping nodes from the stack", [&]() {
before_each([&]() {
/*
* A0__B1__C2.
* . <--0-- A <--1-- B <--2-- C*
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
@ -139,14 +140,14 @@ describe("Stack", [&]() {
it("removes the given number of nodes from the stack", [&]() {
/*
* A0.
* . <--0-- A*
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
AssertThat(results.size, Equals<size_t>(1));
StackPopResult result = results.contents[0];
AssertThat(result.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[0], stateA, tree_len}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateA, tree_len}));
free_pop_results(&results);
/*
@ -165,6 +166,9 @@ describe("Stack", [&]() {
it("does not count 'extra' trees toward the count", [&]() {
trees[1]->extra = true;
/*
* .
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
AssertThat(results.size, Equals<size_t>(1));
@ -176,6 +180,9 @@ describe("Stack", [&]() {
});
it("pops the entire stack when given a negative count", [&]() {
/*
* .
*/
StackPopResultArray results = ts_stack_pop(stack, 0, -1, false);
AssertThat(results.size, Equals<size_t>(1));
@ -189,49 +196,58 @@ describe("Stack", [&]() {
describe("splitting the stack", [&]() {
it("creates a new independent head with the same entries", [&]() {
/*
* A0__B1__C2.
* . <--0-- A <--1-- B <--2-- C*
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_push(stack, 0, stateC, trees[2]);
/*
* . <--0-- A <--1-- B <--2-- C*
*
* `-*
*/
int new_index = ts_stack_split(stack, 0);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(new_index, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
/*
* A0__B1__C2__D3.
* \.
* . <--0-- A <--1-- B <--2-- C <--3-- D*
*
* `-*
*/
ts_stack_push(stack, 0, stateD, trees[3]);
StackPopResultArray pop_results = ts_stack_pop(stack, 1, 1, false);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[1], stateB, tree_len * 2}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateB, tree_len * 2}));
AssertThat(pop_results.size, Equals<size_t>(1));
StackPopResult pop_result = pop_results.contents[0];
AssertThat(pop_result.trees.size, Equals<size_t>(1));
free_pop_results(&pop_results);
/*
* A0__B1__C2__D3.
* \__E4__F3.
* . <--0-- A <--1-- B <--2-- C <--3-- D*
*
* `---4--- E <--5-- F*
*/
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[3]);
ts_stack_push(stack, 1, stateF, trees[5]);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[3], stateF, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
});
});
describe("pushing the same state onto two different heads of the stack", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3.
* \__E4__F5.
* . <--0-- A <--1-- B <--2-- C <--3-- D*
*
* `---4--- E <--5-- F*
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
@ -242,73 +258,52 @@ describe("Stack", [&]() {
ts_stack_push(stack, 1, stateF, trees[5]);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[3], stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[5], stateF, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
});
describe("when the trees are identical", [&]() {
it("merges the heads", [&]() {
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
*/
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateG, trees[6]), Equals(StackPushResultMerged));
it("merges the heads", [&]() {
/*
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G*
* ^ |
* `---4--- E <--5-- F <--7---'
*/
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateG, trees[7]), Equals(StackPushResultMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
const StackEntry *entry1 = ts_stack_head(stack, 0);
AssertThat(*entry1, Equals<StackEntry>({trees[6], stateG, tree_len * 5}));
AssertThat(ts_stack_entry_next_count(entry1), Equals(2));
AssertThat(*ts_stack_entry_next(entry1, 0), Equals<StackEntry>({trees[3], stateD, tree_len * 4}));
AssertThat(*ts_stack_entry_next(entry1, 1), Equals<StackEntry>({trees[5], stateF, tree_len * 4}));
});
AssertThat(ts_stack_head_count(stack), Equals(1));
const StackEntry *entry1 = ts_stack_head(stack, 0);
AssertThat(*entry1, Equals<StackEntry>({stateG, tree_len * 5}));
AssertThat(ts_stack_entry_next_count(entry1), Equals(2));
AssertThat(*ts_stack_entry_next(entry1, 0), Equals<StackEntry>({stateD, tree_len * 4}));
AssertThat(*ts_stack_entry_next(entry1, 1), Equals<StackEntry>({stateF, tree_len * 4}));
});
describe("when the trees are different", [&]() {
before_each([&]() {
tree_selection_spy.tree_to_return = trees[7];
AssertThat(tree_selection_spy.call_count, Equals(0));
});
it("merges the heads, selecting the tree with the tree selection callback", [&]() {
describe("when the merged nodes share a successor", [&]() {
it("recursively merges the successor nodes", [&]() {
/*
* A0__B1__C2__D3__G(6|7)
* \__E4__F5____/
*/
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateG, trees[7]), Equals(StackPushResultMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(tree_selection_spy.call_count, Equals(1));
AssertThat(tree_selection_spy.arguments[0], Equals(trees[6]));
AssertThat(tree_selection_spy.arguments[1], Equals(trees[7]));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[7], stateG, tree_len * 5}));
});
});
describe("when successor nodes of the merged nodes have the same state", [&]() {
it("recursively merges those successor nodes", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__G6.
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G <--7--H*
*
* `---4--- E <--5-- F <--8-- G*
*/
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 0, stateH, trees[7]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateG, trees[6]), Equals(StackPushResultContinued));
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5_/
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G <--7--H*
* |
* `---4--- E <--5-- F <--8---'
*/
AssertThat(ts_stack_push(stack, 1, stateH, trees[7]), Equals(StackPushResultMerged));
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(*head, Equals<StackEntry>({trees[7], stateH, tree_len * 6}))
AssertThat(*head, Equals<StackEntry>({stateH, tree_len * 6}))
AssertThat(ts_stack_entry_next_count(head), Equals(1));
StackEntry *next = ts_stack_entry_next(head, 0);
AssertThat(*next, Equals<StackEntry>({trees[6], stateG, tree_len * 5}))
AssertThat(*next, Equals<StackEntry>({stateG, tree_len * 5}))
AssertThat(ts_stack_entry_next_count(next), Equals(2));
});
});
@ -319,27 +314,24 @@ describe("Stack", [&]() {
ts_tree_retain(trees[3]);
TSTree *parent = ts_tree_make_node(5, 2, tree_array({ trees[2], trees[3] }), metadata);
tree_selection_spy.tree_to_return = parent;
tree_selection_spy.call_count = 0;
/*
* .__C5.
* B2.__/
* . <--2-- B <--3-- C
* ^ |
* `--------5--------'
*/
ts_stack_clear(stack);
ts_stack_split(stack, 0);
AssertThat(ts_stack_push(stack, 0, stateC, parent), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateB, trees[2]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 1, stateC, trees[3]), Equals(StackPushResultMerged));
AssertThat(tree_selection_spy.call_count, Equals(1));
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(*head, Equals<StackEntry>({parent, stateC, tree_len * 2}));
AssertThat(*head, Equals<StackEntry>({stateC, tree_len * 2}));
AssertThat(ts_stack_entry_next_count(head), Equals(2));
AssertThat(ts_stack_entry_next(head, 0), Equals<StackEntry *>(nullptr));
AssertThat(*ts_stack_entry_next(head, 1), Equals<StackEntry>({trees[2], stateB, tree_len}));
AssertThat(*ts_stack_entry_next(head, 1), Equals<StackEntry>({stateB, tree_len}));
ts_tree_release(parent);
});
@ -349,43 +341,48 @@ describe("Stack", [&]() {
describe("popping from a stack head that has been merged", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E*
* ^ |
* `---5--- F <--6-- G <--7---'
*/
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_split(stack, 0);
ts_stack_push(stack, 0, stateC, trees[2]);
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_push(stack, 0, stateG, trees[6]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 0, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[5]);
ts_stack_push(stack, 1, stateG, trees[6]);
ts_stack_push(stack, 1, stateE, trees[7]);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(2));
});
describe("when there are two paths that lead to two different heads", [&]() {
it("returns an entry for each revealed head", [&]() {
/*
* A0__B1__C2.
* \__E4.
* . <--0-- A <--1-- B <--2-- C*
* ^
* `---5--- F*
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
AssertThat(results.size, Equals<size_t>(2));
StackPopResult pop1 = results.contents[0];
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[3], trees[6] })));
StackPopResult result1 = results.contents[0];
AssertThat(result1.head_index, Equals(0));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[3], trees[4] })));
StackPopResult pop2 = results.contents[1];
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.trees, Equals(vector<TSTree *>({ trees[5], trees[6] })));
StackPopResult result2 = results.contents[1];
AssertThat(result2.head_index, Equals(1));
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(result2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[2], stateC, tree_len * 3}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({trees[4], stateE, tree_len * 3}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateC, tree_len * 3}));
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 3}));
free_pop_results(&results);
});
@ -394,50 +391,27 @@ describe("Stack", [&]() {
describe("when there is one path, leading to one head", [&]() {
it("returns a single entry", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__/
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E <--8--H*
* ^ |
* `---5--- F <--6-- G <--7---'
*/
AssertThat(ts_stack_push(stack, 0, stateH, trees[7]), Equals(StackPushResultContinued));
AssertThat(ts_stack_push(stack, 0, stateH, trees[8]), Equals(StackPushResultContinued));
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateH));
/*
* A0__B1__C2__D3__G6.
* \__E4__F5__/
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E*
* ^ |
* `---5--- F <--6-- G <--7---'
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 1, false);
AssertThat(results.size, Equals<size_t>(1));
StackPopResult result1 = results.contents[0];
AssertThat(result1.head_index, Equals(0));
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[8] })));
AssertThat(ts_stack_head_count(stack), Equals(1));
free_pop_results(&results);
});
});
describe("when there is one path that leads to two different heads", [&]() {
it("returns two entries with the same array of trees", [&]() {
/*
* A0__B1__C2__D3__G6__H7.
* \__E4__F5__/
*/
ts_stack_push(stack, 0, stateH, trees[7]);
/*
* A0__B1__C2__D3.
* \__E4__F5.
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
AssertThat(ts_stack_head_count(stack), Equals(2));
AssertThat(results.size, Equals<size_t>(2));
StackPopResult pop1 = results.contents[0];
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
StackPopResult pop2 = results.contents[1];
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
AssertThat(pop2.trees.contents, Equals(pop1.trees.contents));
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
free_pop_results(&results);
});
@ -449,16 +423,16 @@ describe("Stack", [&]() {
tree_selection_spy.tree_to_return = trees[2];
/*
* A0__B1.
* . <--0-- A <--1-- B*
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 3, false);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[1], stateB, tree_len * 2}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
AssertThat(results.size, Equals<size_t>(1));
StackPopResult pop1 = results.contents[0];
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[ 6] })));
StackPopResult result1 = results.contents[0];
AssertThat(result1.head_index, Equals(0));
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[4] })));
free_pop_results(&results);
});
@ -469,16 +443,16 @@ describe("Stack", [&]() {
tree_selection_spy.tree_to_return = trees[4];
/*
* A0__B1.
* . <--0-- A <--1-- B*
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 3, false);
AssertThat(ts_stack_head_count(stack), Equals(1));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({trees[1], stateB, tree_len * 2}));
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
AssertThat(results.size, Equals<size_t>(1));
StackPopResult pop1 = results.contents[0];
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[4], trees[5], trees[6] })))
StackPopResult result1 = results.contents[0];
AssertThat(result1.head_index, Equals(0));
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[7] })))
free_pop_results(&results);
});
@ -489,91 +463,59 @@ describe("Stack", [&]() {
describe("popping from a stack head that has been 3-way merged", [&]() {
before_each([&]() {
/*
* A0__B1__C2__D3__I8__J9.
* \__E4__F5__/
* \__G6__H7__/
* . <--0-- A <--1-- B <--2-- C <--3-- D <--10-- I
* ^ |
* `---4--- E <--5-- F <--6---'
* | |
* `---7--- G <--8-- H <--9---'
*/
ts_stack_clear(stack);
ts_stack_push(stack, 0, stateA, trees[0]);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_split(stack, 0);
ts_stack_split(stack, 1);
ts_stack_push(stack, 0, stateB, trees[1]);
ts_stack_push(stack, 0, stateC, trees[2]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 2, stateG, trees[6]);
ts_stack_push(stack, 0, stateD, trees[3]);
ts_stack_push(stack, 1, stateE, trees[4]);
ts_stack_push(stack, 1, stateF, trees[5]);
ts_stack_push(stack, 2, stateH, trees[7]);
ts_stack_push(stack, 0, stateI, trees[8]);
ts_stack_push(stack, 1, stateI, trees[8]);
ts_stack_push(stack, 1, stateI, trees[8]);
ts_stack_push(stack, 0, stateJ, trees[9]);
ts_stack_push(stack, 1, stateD, trees[6]);
ts_stack_push(stack, 1, stateG, trees[7]);
ts_stack_push(stack, 1, stateH, trees[8]);
ts_stack_push(stack, 1, stateD, trees[9]);
AssertThat(ts_stack_head_count(stack), Equals(1));
StackEntry *head = ts_stack_head(stack, 0);
AssertThat(ts_stack_entry_next_count(head), Equals(1));
AssertThat(ts_stack_entry_next_count(ts_stack_entry_next(head, 0)), Equals(3));
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(3));
ts_stack_push(stack, 0, stateI, trees[10]);
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(1));
});
describe("when there is one path that leads to three different heads", [&]() {
it("returns three entries with the same array of trees", [&]() {
describe("when there are three different paths that lead to three different heads", [&]() {
it("returns three entries with different arrays of trees", [&]() {
/*
* A0__B1__C2__D3.
* \__E4__F5.
* \__G6__H7.
* . <--0-- A <--1-- B <--2-- C*
* ^
* `---4--- E <--5-- F*
* |
* `---7--- G <--8-- H*
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
AssertThat(ts_stack_head_count(stack), Equals(3));
AssertThat(results.size, Equals<size_t>(3));
StackPopResult pop1 = results.contents[0];
AssertThat(ts_stack_top_tree(stack, 0), Equals(trees[3]));
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[8], trees[9] })))
StackPopResult result1 = results.contents[0];
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
AssertThat(result1.head_index, Equals(0));
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
StackPopResult pop2 = results.contents[1];
AssertThat(ts_stack_top_tree(stack, 1), Equals(trees[5]));
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.trees.size, Equals<size_t>(2));
AssertThat(pop2.trees.contents, Equals(pop1.trees.contents));
StackPopResult result2 = results.contents[1];
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
AssertThat(result2.head_index, Equals(1));
AssertThat(result2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
StackPopResult pop3 = results.contents[2];
AssertThat(ts_stack_top_tree(stack, 2), Equals(trees[7]));
AssertThat(pop3.head_index, Equals(2));
AssertThat(pop3.trees.size, Equals<size_t>(2));
AssertThat(pop3.trees.contents, Equals(pop1.trees.contents));
free_pop_results(&results);
});
});
describe("when there are three different paths that lead to three different heads", [&]() {
it("returns three entries with different arrays of trees", [&]() {
/*
* A0__B1__C2.
* \__E4.
* \__G6.
*/
StackPopResultArray results = ts_stack_pop(stack, 0, 3, false);
AssertThat(ts_stack_head_count(stack), Equals(3));
AssertThat(results.size, Equals<size_t>(3));
StackPopResult pop1 = results.contents[0];
AssertThat(ts_stack_top_tree(stack, 0), Equals(trees[2]));
AssertThat(pop1.head_index, Equals(0));
AssertThat(pop1.trees, Equals(vector<TSTree *>({ trees[3], trees[8], trees[9] })))
StackPopResult pop2 = results.contents[1];
AssertThat(ts_stack_top_tree(stack, 1), Equals(trees[4]));
AssertThat(pop2.head_index, Equals(1));
AssertThat(pop2.trees, Equals(vector<TSTree *>({ trees[5], trees[8], trees[9] })))
StackPopResult pop3 = results.contents[2];
AssertThat(ts_stack_top_tree(stack, 2), Equals(trees[6]));
AssertThat(pop3.head_index, Equals(2));
AssertThat(pop3.trees, Equals(vector<TSTree *>({ trees[7], trees[8], trees[9] })))
StackPopResult result3 = results.contents[2];
AssertThat(ts_stack_top_state(stack, 2), Equals(stateH));
AssertThat(result3.head_index, Equals(2));
AssertThat(result3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
free_pop_results(&results);
});
@ -584,9 +526,21 @@ describe("Stack", [&]() {
END_TEST
bool operator==(const StackEntry &left, const StackEntry &right) {
return left.state == right.state && ts_tree_eq(left.tree, right.tree) && ts_length_eq(left.position, right.position);
return left.state == right.state && ts_length_eq(left.position, right.position);
}
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
return stream << "{" << entry.state << ", " << entry.tree << ", " << entry.position << "}";
return stream << "{" << entry.state << ", " << entry.position << "}";
}
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
stream << "[";
bool first = true;
for (size_t i = 0; i < array.size; i++) {
if (!first)
stream << ", ";
first = false;
stream << array.contents[i];
}
return stream << "]";
}

View file

@ -40,7 +40,7 @@ extern "C" {
#define array_push(self, element) \
(((self)->size < (self)->capacity || \
array_grow((self), (self)->capacity * 2)) && \
array_grow((self), (self)->capacity ? (self)->capacity * 2 : 4)) && \
((self)->contents[(self)->size++] = (element), true))
#define array_splice(self, index, old_count, new_count, new_elements) \

View file

@ -71,16 +71,14 @@ static ParseActionResult ts_parser__breakdown_top_of_stack(TSParser *self,
* Since only one entry (not counting extra trees) is being popped from the
* stack, there should only be one possible array of removed trees.
*/
StackPopResult first_result = pop_results.contents[0];
TreeArray removed_trees = first_result.trees;
TSTree *parent = *array_front(&removed_trees);
LOG("breakdown_pop sym:%s, size:%lu", SYM_NAME(parent->symbol),
ts_tree_total_size(parent).chars);
for (size_t i = 0; i < pop_results.size; i++) {
StackPopResult pop_result = pop_results.contents[i];
assert(pop_result.trees.contents == removed_trees.contents);
TreeArray removed_trees = pop_result.trees;
TSTree *parent = *array_front(&removed_trees);
int head_index = pop_result.head_index;
LOG("breakdown_pop sym:%s, size:%lu", SYM_NAME(parent->symbol),
ts_tree_total_size(parent).chars);
StackPushResult last_push = StackPushResultContinued;
TSStateId state = ts_stack_top_state(self->stack, head_index);
@ -112,12 +110,11 @@ static ParseActionResult ts_parser__breakdown_top_of_stack(TSParser *self,
assert(last_push != StackPushResultMerged);
else
assert(last_push == StackPushResultMerged);
for (size_t j = 0, count = removed_trees.size; j < count; j++)
ts_tree_release(removed_trees.contents[j]);
array_delete(&removed_trees);
}
for (size_t j = 0, count = first_result.trees.size; j < count; j++)
ts_tree_release(first_result.trees.contents[j]);
array_delete(&removed_trees);
} while (last_child && last_child->child_count > 0);
return UpdatedStackHead;
@ -268,13 +265,17 @@ static int ts_parser__select_tree(void *data, TSTree *left, TSTree *right) {
TSParser *self = data;
int comparison = ts_tree_compare(left, right);
if (comparison <= 0) {
LOG("select tree:%s, over_tree:%s", SYM_NAME(left->symbol),
SYM_NAME(right->symbol));
} else {
LOG("select tree:%s, over_tree:%s", SYM_NAME(right->symbol),
SYM_NAME(left->symbol));
switch (comparison) {
case -1:
LOG_ACTION("select tree:%s, over_tree:%s", SYM_NAME(left->symbol),
SYM_NAME(right->symbol));
break;
case 1:
LOG_ACTION("select tree:%s, over_tree:%s", SYM_NAME(right->symbol),
SYM_NAME(left->symbol));
break;
}
return comparison;
}
@ -339,35 +340,21 @@ static ParseActionResult ts_parser__reduce(TSParser *self, int head,
*/
TSTree *parent = NULL;
size_t trailing_extra_count = 0;
for (size_t j = 0; j < i; j++) {
StackPopResult prior_result = pop_results.contents[j];
if (pop_result.trees.contents == prior_result.trees.contents) {
parent = self->reduce_parents.contents[j];
trailing_extra_count = pop_result.trees.size - parent->child_count;
ts_tree_retain(parent);
for (size_t k = parent->child_count; k < pop_result.trees.size; k++)
ts_tree_retain(pop_result.trees.contents[k]);
for (size_t j = pop_result.trees.size - 1; j + 1 > 0; j--) {
if (pop_result.trees.contents[j]->extra)
trailing_extra_count++;
else
break;
}
}
size_t popped_child_count = pop_result.trees.size - trailing_extra_count;
parent = ts_tree_make_node(symbol, popped_child_count, pop_result.trees.contents,
metadata);
if (!parent) {
for (size_t j = pop_result.trees.size - 1; j + 1 > 0; j--) {
if (pop_result.trees.contents[j]->extra) {
trailing_extra_count++;
} else
break;
}
size_t child_count = pop_result.trees.size - trailing_extra_count;
parent = ts_tree_make_node(symbol, child_count, pop_result.trees.contents,
metadata);
if (!parent) {
for (size_t i = 0; i < pop_result.trees.size; i++)
ts_tree_release(pop_result.trees.contents[i]);
array_delete(&pop_result.trees);
goto error;
}
for (size_t i = 0; i < pop_result.trees.size; i++)
ts_tree_release(pop_result.trees.contents[i]);
array_delete(&pop_result.trees);
goto error;
}
if (!array_push(&self->reduce_parents, parent))
@ -487,7 +474,8 @@ static ParseActionResult ts_parser__reduce_error(TSParser *self, int head,
default: {
StackEntry *entry = ts_stack_head(self->stack, head);
entry->position = ts_length_add(entry->position, lookahead->padding);
entry->tree->size = ts_length_add(entry->tree->size, lookahead->padding);
TSTree *tree = *array_front(&self->reduce_parents);
tree->size = ts_length_add(tree->size, lookahead->padding);
lookahead->padding = ts_length_zero();
return UpdatedStackHead;
}
@ -824,7 +812,7 @@ TSTree *ts_parser_parse(TSParser *self, TSInput input, TSTree *previous_tree) {
return NULL;
}
LOG("lookahead sym:%s, size:%lu", SYM_NAME(lookahead->symbol),
LOG("lookahead sym:(%s,%d), size:%lu", SYM_NAME(lookahead->symbol), lookahead->symbol,
ts_tree_total_chars(lookahead));
switch (ts_parser__consume_lookahead(self, head, lookahead)) {

View file

@ -12,12 +12,19 @@
#define STARTING_TREE_CAPACITY 10
#define MAX_NODE_POOL_SIZE 50
typedef struct StackNode {
typedef struct StackNode StackNode;
typedef struct {
StackNode *node;
TSTree *tree;
} StackLink;
struct StackNode {
StackEntry entry;
struct StackNode *successors[MAX_SUCCESSOR_COUNT];
StackLink successors[MAX_SUCCESSOR_COUNT];
short unsigned int successor_count;
short unsigned int ref_count;
} StackNode;
};
typedef struct {
size_t goal_tree_count;
@ -100,11 +107,6 @@ TSLength ts_stack_top_position(const Stack *self, int head) {
return entry ? entry->position : ts_length_zero();
}
TSTree *ts_stack_top_tree(const Stack *self, int head) {
StackEntry *entry = ts_stack_head((Stack *)self, head);
return entry ? entry->tree : NULL;
}
StackEntry *ts_stack_head(Stack *self, int head) {
StackNode *node = self->heads.contents[head];
return node ? &node->entry : NULL;
@ -119,7 +121,7 @@ int ts_stack_entry_next_count(const StackEntry *entry) {
}
StackEntry *ts_stack_entry_next(const StackEntry *entry, int i) {
return &((const StackNode *)entry)->successors[i]->entry;
return &((const StackNode *)entry)->successors[i].node->entry;
}
/*
@ -139,9 +141,10 @@ static bool stack_node_release(Stack *self, StackNode *node) {
assert(node->ref_count != 0);
node->ref_count--;
if (node->ref_count == 0) {
for (int i = 0; i < node->successor_count; i++)
stack_node_release(self, node->successors[i]);
ts_tree_release(node->entry.tree);
for (int i = 0; i < node->successor_count; i++) {
stack_node_release(self, node->successors[i].node);
ts_tree_release(node->successors[i].tree);
}
if (self->node_pool.size >= MAX_NODE_POOL_SIZE)
ts_free(node);
@ -174,26 +177,12 @@ static StackNode *stack_node_new(Stack *self, StackNode *next, TSStateId state,
*node = (StackNode){
.ref_count = 1,
.successor_count = 1,
.successors = { next, NULL, NULL },
.entry = {.state = state, .tree = tree, .position = position },
.successors = { {next, tree} },
.entry = {.state = state, .position = position },
};
return node;
}
static void ts_stack__add_alternative_tree(Stack *self, StackNode *node,
TSTree *tree) {
if (tree != node->entry.tree) {
int comparison = self->tree_selection_function(self->tree_selection_payload,
node->entry.tree, tree);
if (comparison > 0) {
ts_tree_retain(tree);
ts_tree_release(node->entry.tree);
node->entry.tree = tree;
}
}
}
static void ts_stack__clear_pop_result(Stack *self, StackPopResult *result) {
for (size_t i = 0; i < result->trees.size; i++)
ts_tree_release(result->trees.contents[i]);
@ -230,27 +219,31 @@ static void ts_stack__add_alternative_pop_result(Stack *self,
}
}
static void ts_stack__add_node_successor(Stack *self, StackNode *node,
StackNode *new_successor) {
for (int i = 0; i < node->successor_count; i++) {
StackNode *successor = node->successors[i];
if (successor == new_successor)
return;
if (!successor)
continue;
if (successor->entry.state == new_successor->entry.state) {
ts_stack__add_alternative_tree(self, successor, new_successor->entry.tree);
for (int j = 0; j < new_successor->successor_count; j++)
ts_stack__add_node_successor(self, successor,
new_successor->successors[j]);
return;
static void stack_node__add_successor(StackNode *self,
TSTree *new_tree,
StackNode *new_node) {
for (int i = 0; i < self->successor_count; i++) {
StackLink successor = self->successors[i];
if (successor.tree == new_tree) {
if (successor.node == new_node)
return;
if (successor.node && new_node &&
successor.node->entry.state == new_node->entry.state) {
for (int j = 0; j < new_node->successor_count; j++) {
stack_node__add_successor(successor.node,
new_node->successors[j].tree, new_node->successors[j].node);
}
return;
}
}
}
stack_node_retain(new_successor);
node->successors[node->successor_count] = new_successor;
node->successor_count++;
stack_node_retain(new_node);
ts_tree_retain(new_tree);
self->successors[self->successor_count++] = (StackLink){
new_node,
new_tree,
};
}
/*
@ -296,8 +289,7 @@ StackPushResult ts_stack_push(Stack *self, int head_index, TSStateId state,
StackEntry prior_entry = prior_node->entry;
if (prior_entry.state == state &&
ts_length_eq(prior_entry.position, position)) {
ts_stack__add_alternative_tree(self, prior_node, tree);
ts_stack__add_node_successor(self, prior_node, current_head);
stack_node__add_successor(prior_node, tree, current_head);
ts_stack_remove_head(self, head_index);
return StackPushResultMerged;
}
@ -349,38 +341,43 @@ StackPopResultArray ts_stack_pop(Stack *self, int head_index, int child_count,
if (!node || path->trees.size == path->goal_tree_count)
continue;
all_paths_done = false;
/*
* Children that are 'extra' do not count towards the total child count.
*/
if (node->entry.tree->extra && !count_extra)
path->goal_tree_count++;
/*
* If a node has more than one successor, create new paths for each of
* the additional successors.
*/
if (path->is_shared) {
path->trees = (TreeArray)array_copy(&path->trees);
for (size_t j = 0; j < path->trees.size; j++)
ts_tree_retain(path->trees.contents[j]);
path->is_shared = false;
}
for (int j = 0; j < node->successor_count; j++) {
StackLink successor = node->successors[j];
ts_tree_retain(node->entry.tree);
if (!array_push(&path->trees, node->entry.tree))
goto error;
PopPath *next_path;
if (j == 0) {
next_path = path;
} else {
if (!array_push(&self->pop_paths, *path))
goto error;
next_path = array_back(&self->pop_paths);
next_path->is_shared = true;
}
path->node = path->node->successors[0];
for (int j = 1; j < node->successor_count; j++) {
if (!array_push(&self->pop_paths, *path))
if (next_path->is_shared) {
next_path->trees = (TreeArray)array_copy(&path->trees);
next_path->trees.size--;
for (size_t j = 0; j < next_path->trees.size; j++)
ts_tree_retain(next_path->trees.contents[j]);
next_path->is_shared = false;
}
next_path->node = successor.node;
ts_tree_retain(successor.tree);
if (!array_push(&next_path->trees, successor.tree))
goto error;
PopPath *next_path = array_back(&self->pop_paths);
next_path->node = node->successors[j];
next_path->is_shared = true;
/*
* Children that are 'extra' do not count towards the total child count.
*/
if (successor.tree->extra && !count_extra)
next_path->goal_tree_count++;
}
}
}
@ -440,7 +437,7 @@ void ts_stack_shrink(Stack *self, int head_index, int count) {
for (int i = 0; i < count; i++) {
if (new_head->successor_count == 0)
break;
new_head = new_head->successors[0];
new_head = new_head->successors[0].node;
}
stack_node_retain(new_head);
stack_node_release(self, head);
@ -475,10 +472,12 @@ void ts_stack_delete(Stack *self) {
ts_free(self);
}
static const char *graph_colors[] = {
static const char *COLORS[] = {
"red", "blue", "orange", "green", "purple",
};
static size_t COLOR_COUNT = sizeof(COLORS) / sizeof(COLORS[0]);
size_t ts_stack__write_dot_graph(Stack *self, char *string, size_t n,
const char **symbol_names) {
char *cursor = string;
@ -486,15 +485,15 @@ size_t ts_stack__write_dot_graph(Stack *self, char *string, size_t n,
cursor += snprintf(*s, n, "digraph stack {\n");
cursor += snprintf(*s, n, "rankdir=\"RL\";\n");
Array(StackNode *) visited_nodes;
array_init(&visited_nodes);
array_clear(&self->pop_paths);
for (size_t i = 0; i < self->heads.size; i++) {
StackNode *node = self->heads.contents[i];
const char *color =
graph_colors[i % (sizeof(graph_colors) / sizeof(graph_colors[0]))];
const char *color = COLORS[i % COLOR_COUNT];
cursor += snprintf(*s, n, "node_%p [color=%s];\n", node, color);
array_push(&self->pop_paths, ((PopPath){
.node = node,
}));
array_push(&self->pop_paths, ((PopPath){ .node = node }));
}
bool all_paths_done = false;
@ -505,38 +504,47 @@ size_t ts_stack__write_dot_graph(Stack *self, char *string, size_t n,
PopPath *path = &self->pop_paths.contents[i];
StackNode *node = path->node;
for (size_t j = 0; j < visited_nodes.size; j++) {
if (visited_nodes.contents[j] == node) {
node = NULL;
break;
}
}
if (!node)
continue;
all_paths_done = false;
cursor +=
snprintf(*s, n, "node_%p [label=\"%s\\n%d\"];\n", node,
symbol_names[node->entry.tree->symbol], node->entry.state);
cursor += snprintf(*s, n, "node_%p [label=%d];\n", node, node->entry.state);
path->node = node->successors[0];
cursor +=
snprintf(*s, n, "node_%p -> node_%p;\n", node, node->successors[0]);
for (int j = 0; j < node->successor_count; j++) {
StackLink successor = node->successors[j];
cursor += snprintf(*s, n, "node_%p -> node_%p [label=\"%s\"];\n", node,
successor.node, symbol_names[successor.tree->symbol]);
for (int j = 1; j < node->successor_count; j++) {
if (!array_push(&self->pop_paths, *path))
goto error;
cursor +=
snprintf(*s, n, "node_%p -> node_%p;\n", node, node->successors[j]);
PopPath *next_path = array_back(&self->pop_paths);
next_path->node = node->successors[j];
next_path->is_shared = true;
if (j == 0) {
path->node = successor.node;
} else {
if (!array_push(&self->pop_paths, *path))
goto error;
PopPath *next_path = array_back(&self->pop_paths);
next_path->node = successor.node;
}
}
if (!array_push(&visited_nodes, node))
goto error;
}
}
cursor += snprintf(*s, n, "node_%p [label=\"-\\n0\"];\n", NULL);
cursor += snprintf(*s, n, "node_%p [label=0];\n", NULL);
cursor += snprintf(*s, n, "}\n");
array_delete(&visited_nodes);
return cursor - string;
error:
array_delete(&visited_nodes);
return (size_t)-1;
}

View file

@ -12,7 +12,6 @@ extern "C" {
typedef struct Stack Stack;
typedef struct {
TSTree *tree;
TSStateId state;
TSLength position;
} StackEntry;
@ -53,12 +52,6 @@ int ts_stack_head_count(const Stack *);
*/
TSStateId ts_stack_top_state(const Stack *, int head);
/*
* Get the tree at given head of the stack. If the stack is empty, this
* returns NULL.
*/
TSTree *ts_stack_top_tree(const Stack *, int head);
/*
* Get the position of the given head of the stack. If the stack is empty, this
* returns {0, 0}.