546 lines
20 KiB
C++
546 lines
20 KiB
C++
#include "spec_helper.h"
|
|
#include "helpers/tree_helpers.h"
|
|
#include "helpers/record_alloc.h"
|
|
#include "helpers/stream_methods.h"
|
|
#include "runtime/stack.h"
|
|
#include "runtime/tree.h"
|
|
#include "runtime/length.h"
|
|
#include "runtime/alloc.h"
|
|
|
|
enum {
|
|
stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH, stateI, stateJ
|
|
};
|
|
|
|
enum {
|
|
symbol0, symbol1, symbol2, symbol3, symbol4, symbol5, symbol6, symbol7, symbol8,
|
|
symbol9, symbol10
|
|
};
|
|
|
|
struct TreeSelectionSpy {
|
|
int call_count;
|
|
TSTree *tree_to_return;
|
|
const TSTree *arguments[2];
|
|
};
|
|
|
|
TSLength operator*(const TSLength &length, size_t factor) {
|
|
return {length.bytes * factor, length.chars * factor, 0, length.columns * factor};
|
|
}
|
|
|
|
extern "C"
|
|
int tree_selection_spy_callback(void *data, TSTree *left, TSTree *right) {
|
|
TreeSelectionSpy *spy = (TreeSelectionSpy *)data;
|
|
spy->call_count++;
|
|
spy->arguments[0] = left;
|
|
spy->arguments[1] = right;
|
|
if (spy->tree_to_return == left)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
void free_pop_results(StackPopResultArray *pop_results) {
|
|
for (size_t i = 0; i < pop_results->size; i++) {
|
|
StackPopResult pop_result = pop_results->contents[i];
|
|
|
|
bool matches_prior_trees = false;
|
|
for (size_t j = 0; j < i; j++) {
|
|
StackPopResult prior_result = pop_results->contents[j];
|
|
if (pop_result.trees.contents == prior_result.trees.contents) {
|
|
matches_prior_trees = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!matches_prior_trees) {
|
|
for (size_t j = 0; j < pop_result.trees.size; j++)
|
|
ts_tree_release(pop_result.trees.contents[j]);
|
|
array_delete(&pop_result.trees);
|
|
}
|
|
}
|
|
}
|
|
|
|
START_TEST
|
|
|
|
describe("Stack", [&]() {
|
|
Stack *stack;
|
|
const size_t tree_count = 11;
|
|
TSTree *trees[tree_count];
|
|
TreeSelectionSpy tree_selection_spy{0, NULL, {NULL, NULL}};
|
|
TSLength tree_len = {2, 3, 0, 3};
|
|
TSSymbolMetadata metadata = {true, true, true, true};
|
|
|
|
before_each([&]() {
|
|
record_alloc::start();
|
|
|
|
stack = ts_stack_new();
|
|
|
|
ts_stack_set_tree_selection_callback(stack,
|
|
&tree_selection_spy,
|
|
tree_selection_spy_callback
|
|
);
|
|
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
trees[i] = ts_tree_make_leaf(i, ts_length_zero(), tree_len, {
|
|
true, true, false, true,
|
|
});
|
|
});
|
|
|
|
after_each([&]() {
|
|
ts_stack_delete(stack);
|
|
for (size_t i = 0; i < tree_count; i++)
|
|
ts_tree_release(trees[i]);
|
|
|
|
record_alloc::stop();
|
|
AssertThat(record_alloc::outstanding_allocation_indices(), IsEmpty());
|
|
});
|
|
|
|
describe("pushing entries to the stack", [&]() {
|
|
it("adds entries to the stack", [&]() {
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
/*
|
|
* . <--0-- A*
|
|
*/
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
const StackEntry *entry1 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<StackEntry>({stateA, tree_len}));
|
|
AssertThat(ts_stack_entry_next_count(entry1), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry1, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B*
|
|
*/
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
const StackEntry *entry2 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry2, Equals<StackEntry>({stateB, tree_len * 2}));
|
|
AssertThat(ts_stack_entry_next_count(entry2), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry2, 0), Equals(entry1));
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
*/
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
const StackEntry *entry3 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry3, Equals<StackEntry>({stateC, tree_len * 3}));
|
|
AssertThat(ts_stack_entry_next_count(entry3), Equals(1));
|
|
AssertThat(ts_stack_entry_next(entry3, 0), Equals(entry2));
|
|
});
|
|
});
|
|
|
|
describe("popping nodes from the stack", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
*/
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
});
|
|
|
|
it("removes the given number of nodes from the stack", [&]() {
|
|
/*
|
|
* . <--0-- A*
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
|
|
StackPopResult result = results.contents[0];
|
|
AssertThat(result.trees, Equals(vector<TSTree *>({ trees[1], trees[2] })));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateA, tree_len}));
|
|
free_pop_results(&results);
|
|
|
|
/*
|
|
* .
|
|
*/
|
|
results = ts_stack_pop(stack, 0, 1, false);
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
|
|
result = results.contents[0];
|
|
AssertThat(result.trees, Equals(vector<TSTree *>({ trees[0] })));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
|
|
it("does not count 'extra' trees toward the count", [&]() {
|
|
trees[1]->extra = true;
|
|
|
|
/*
|
|
* .
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
|
|
StackPopResult result = results.contents[0];
|
|
AssertThat(result.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
|
|
AssertThat(ts_stack_head(stack, 0), Equals<const StackEntry *>(nullptr));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
|
|
it("pops the entire stack when given a negative count", [&]() {
|
|
/*
|
|
* .
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, -1, false);
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
|
|
StackPopResult result = results.contents[0];
|
|
AssertThat(result.trees, Equals(vector<TSTree *>({ trees[0], trees[1], trees[2] })));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
|
|
describe("splitting the stack", [&]() {
|
|
it("creates a new independent head with the same entries", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
*/
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
* ↑
|
|
* `-*
|
|
*/
|
|
int new_index = ts_stack_split(stack, 0);
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(new_index, Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateC));
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D*
|
|
* ↑
|
|
* `-*
|
|
*/
|
|
ts_stack_push(stack, 0, stateD, trees[3]);
|
|
StackPopResultArray pop_results = ts_stack_pop(stack, 1, 1, false);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
AssertThat(pop_results.size, Equals<size_t>(1));
|
|
StackPopResult pop_result = pop_results.contents[0];
|
|
AssertThat(pop_result.trees.size, Equals<size_t>(1));
|
|
free_pop_results(&pop_results);
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D*
|
|
* ↑
|
|
* `---4--- E <--5-- F*
|
|
*/
|
|
ts_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_stack_push(stack, 1, stateF, trees[5]);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
});
|
|
|
|
describe("pushing the same state onto two different heads of the stack", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D*
|
|
* ↑
|
|
* `---4--- E <--5-- F*
|
|
*/
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
ts_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_stack_push(stack, 1, stateF, trees[5]);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
|
|
it("merges the heads", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G*
|
|
* ^ |
|
|
* `---4--- E <--5-- F <--7---'
|
|
*/
|
|
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_push(stack, 1, stateG, trees[7]), Equals(StackPushResultMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
const StackEntry *entry1 = ts_stack_head(stack, 0);
|
|
AssertThat(*entry1, Equals<StackEntry>({stateG, tree_len * 5}));
|
|
AssertThat(ts_stack_entry_next_count(entry1), Equals(2));
|
|
AssertThat(*ts_stack_entry_next(entry1, 0), Equals<StackEntry>({stateD, tree_len * 4}));
|
|
AssertThat(*ts_stack_entry_next(entry1, 1), Equals<StackEntry>({stateF, tree_len * 4}));
|
|
});
|
|
|
|
describe("when the merged nodes share a successor", [&]() {
|
|
it("recursively merges the successor nodes", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G <--7--H*
|
|
* ↑
|
|
* `---4--- E <--5-- F <--8-- G*
|
|
*/
|
|
AssertThat(ts_stack_push(stack, 0, stateG, trees[6]), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_push(stack, 0, stateH, trees[7]), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_push(stack, 1, stateG, trees[6]), Equals(StackPushResultContinued));
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--6-- G <--7--H*
|
|
* ↑ |
|
|
* `---4--- E <--5-- F <--8---'
|
|
*/
|
|
AssertThat(ts_stack_push(stack, 1, stateH, trees[7]), Equals(StackPushResultMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
StackEntry *head = ts_stack_head(stack, 0);
|
|
AssertThat(*head, Equals<StackEntry>({stateH, tree_len * 6}))
|
|
AssertThat(ts_stack_entry_next_count(head), Equals(1));
|
|
|
|
StackEntry *next = ts_stack_entry_next(head, 0);
|
|
AssertThat(*next, Equals<StackEntry>({stateG, tree_len * 5}))
|
|
AssertThat(ts_stack_entry_next_count(next), Equals(2));
|
|
});
|
|
});
|
|
|
|
describe("when the first head is only one node deep", [&]() {
|
|
it("creates a node with one null successor and one non-null successor", [&]() {
|
|
ts_tree_retain(trees[2]);
|
|
ts_tree_retain(trees[3]);
|
|
TSTree *parent = ts_tree_make_node(5, 2, tree_array({ trees[2], trees[3] }), metadata);
|
|
|
|
/*
|
|
* . <--2-- B <--3-- C
|
|
* ^ |
|
|
* `--------5--------'
|
|
*/
|
|
ts_stack_clear(stack);
|
|
ts_stack_split(stack, 0);
|
|
AssertThat(ts_stack_push(stack, 0, stateC, parent), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_push(stack, 1, stateB, trees[2]), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_push(stack, 1, stateC, trees[3]), Equals(StackPushResultMerged));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
StackEntry *head = ts_stack_head(stack, 0);
|
|
AssertThat(*head, Equals<StackEntry>({stateC, tree_len * 2}));
|
|
|
|
AssertThat(ts_stack_entry_next_count(head), Equals(2));
|
|
AssertThat(ts_stack_entry_next(head, 0), Equals<StackEntry *>(nullptr));
|
|
AssertThat(*ts_stack_entry_next(head, 1), Equals<StackEntry>({stateB, tree_len}));
|
|
|
|
ts_tree_release(parent);
|
|
});
|
|
});
|
|
});
|
|
|
|
describe("popping from a stack head that has been merged", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E*
|
|
* ^ |
|
|
* `---5--- F <--6-- G <--7---'
|
|
*/
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
ts_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_stack_push(stack, 0, stateE, trees[4]);
|
|
ts_stack_push(stack, 1, stateF, trees[5]);
|
|
ts_stack_push(stack, 1, stateG, trees[6]);
|
|
ts_stack_push(stack, 1, stateE, trees[7]);
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(2));
|
|
});
|
|
|
|
describe("when there are two paths that lead to two different heads", [&]() {
|
|
it("returns an entry for each revealed head", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
* ^
|
|
* `---5--- F*
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
|
|
|
|
AssertThat(results.size, Equals<size_t>(2));
|
|
StackPopResult result1 = results.contents[0];
|
|
AssertThat(result1.head_index, Equals(0));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
|
|
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[3], trees[4] })));
|
|
|
|
StackPopResult result2 = results.contents[1];
|
|
AssertThat(result2.head_index, Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
|
|
AssertThat(result2.trees, Equals(vector<TSTree *>({ trees[6], trees[7] })));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(2));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateC, tree_len * 3}));
|
|
AssertThat(*ts_stack_head(stack, 1), Equals<StackEntry>({stateF, tree_len * 3}));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
|
|
describe("when there is one path, leading to one head", [&]() {
|
|
it("returns a single entry", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E <--8--H*
|
|
* ^ |
|
|
* `---5--- F <--6-- G <--7---'
|
|
*/
|
|
AssertThat(ts_stack_push(stack, 0, stateH, trees[8]), Equals(StackPushResultContinued));
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateH));
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--4-- E*
|
|
* ^ |
|
|
* `---5--- F <--6-- G <--7---'
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 1, false);
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
StackPopResult result1 = results.contents[0];
|
|
AssertThat(result1.head_index, Equals(0));
|
|
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[8] })));
|
|
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateE));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
|
|
describe("when there are two paths that converge at the same head", [&]() {
|
|
describe("when the first path is preferred by the callback", [&]() {
|
|
it("returns one entry for that head, with the first path of trees", [&]() {
|
|
tree_selection_spy.tree_to_return = trees[2];
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B*
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 3, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
StackPopResult result1 = results.contents[0];
|
|
AssertThat(result1.head_index, Equals(0));
|
|
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[2], trees[3], trees[4] })));
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
|
|
describe("when the second path is preferred by the callback", [&]() {
|
|
it("returns one entry for that head, with the second path of trees", [&]() {
|
|
tree_selection_spy.tree_to_return = trees[4];
|
|
|
|
/*
|
|
* . <--0-- A <--1-- B*
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 3, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(*ts_stack_head(stack, 0), Equals<StackEntry>({stateB, tree_len * 2}));
|
|
|
|
AssertThat(results.size, Equals<size_t>(1));
|
|
StackPopResult result1 = results.contents[0];
|
|
AssertThat(result1.head_index, Equals(0));
|
|
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[5], trees[6], trees[7] })))
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
describe("popping from a stack head that has been 3-way merged", [&]() {
|
|
before_each([&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C <--3-- D <--10-- I
|
|
* ^ |
|
|
* `---4--- E <--5-- F <--6---'
|
|
* | |
|
|
* `---7--- G <--8-- H <--9---'
|
|
*/
|
|
ts_stack_clear(stack);
|
|
ts_stack_push(stack, 0, stateA, trees[0]);
|
|
ts_stack_split(stack, 0);
|
|
ts_stack_split(stack, 1);
|
|
ts_stack_push(stack, 0, stateB, trees[1]);
|
|
ts_stack_push(stack, 0, stateC, trees[2]);
|
|
ts_stack_push(stack, 0, stateD, trees[3]);
|
|
ts_stack_push(stack, 1, stateE, trees[4]);
|
|
ts_stack_push(stack, 1, stateF, trees[5]);
|
|
ts_stack_push(stack, 1, stateD, trees[6]);
|
|
ts_stack_push(stack, 1, stateG, trees[7]);
|
|
ts_stack_push(stack, 1, stateH, trees[8]);
|
|
ts_stack_push(stack, 1, stateD, trees[9]);
|
|
AssertThat(ts_stack_head_count(stack), Equals(1));
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(3));
|
|
ts_stack_push(stack, 0, stateI, trees[10]);
|
|
AssertThat(ts_stack_entry_next_count(ts_stack_head(stack, 0)), Equals(1));
|
|
});
|
|
|
|
describe("when there are three different paths that lead to three different heads", [&]() {
|
|
it("returns three entries with different arrays of trees", [&]() {
|
|
/*
|
|
* . <--0-- A <--1-- B <--2-- C*
|
|
* ^
|
|
* `---4--- E <--5-- F*
|
|
* |
|
|
* `---7--- G <--8-- H*
|
|
*/
|
|
StackPopResultArray results = ts_stack_pop(stack, 0, 2, false);
|
|
AssertThat(ts_stack_head_count(stack), Equals(3));
|
|
|
|
AssertThat(results.size, Equals<size_t>(3));
|
|
|
|
StackPopResult result1 = results.contents[0];
|
|
AssertThat(ts_stack_top_state(stack, 0), Equals(stateC));
|
|
AssertThat(result1.head_index, Equals(0));
|
|
AssertThat(result1.trees, Equals(vector<TSTree *>({ trees[3], trees[10] })))
|
|
|
|
StackPopResult result2 = results.contents[1];
|
|
AssertThat(ts_stack_top_state(stack, 1), Equals(stateF));
|
|
AssertThat(result2.head_index, Equals(1));
|
|
AssertThat(result2.trees, Equals(vector<TSTree *>({ trees[6], trees[10] })))
|
|
|
|
StackPopResult result3 = results.contents[2];
|
|
AssertThat(ts_stack_top_state(stack, 2), Equals(stateH));
|
|
AssertThat(result3.head_index, Equals(2));
|
|
AssertThat(result3.trees, Equals(vector<TSTree *>({ trees[9], trees[10] })))
|
|
|
|
free_pop_results(&results);
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
END_TEST
|
|
|
|
bool operator==(const StackEntry &left, const StackEntry &right) {
|
|
return left.state == right.state && ts_length_eq(left.position, right.position);
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const StackEntry &entry) {
|
|
return stream << "{" << entry.state << ", " << entry.position << "}";
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream, const TreeArray &array) {
|
|
stream << "[";
|
|
bool first = true;
|
|
for (size_t i = 0; i < array.size; i++) {
|
|
if (!first)
|
|
stream << ", ";
|
|
first = false;
|
|
stream << array.contents[i];
|
|
}
|
|
return stream << "]";
|
|
}
|